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1

ABSTRACT

Large passive detectors used in screening for special nuclear materials at ports

of entry are characterized by poor spectral resolution, making identification of ra-

dionuclides a difficult task. Most identification routines, which fit empirical shapes

and use derivatives, are impractical in these situations. Here I develop new, physics-

based methods to determine the presence of spectral signatures of one or more of a set

of isotopes. Gamma-ray counts are modeled as Poisson processes, where the average

part is taken to be the model and the difference between the observed gamma-ray

counts and the average is considered random noise. In the linear part, the unknown

coefficients represent the intensites of the isotopes. Therefore, it is of great interest

not to estimate each coefficient, but rather determine if the coefficient is non-zero,

corresponding to the presence of the isotope. This thesis provides new selection algo-

rithms, and, since detector data is undoubtedly finite, this unique work emphasizes

selection when data is fixed and finite.
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1

CHAPTER 1
INTRODUCTION

This thesis details the development of new physics-based methods for deter-

mining the presence of spectral signatures from one or more of a set of nuclear ma-

terials. The spectral signatures addressed in this work are weak as compared to

background effects and poorly resolved as to make the detection problem non-ideal

and non-trivial. Unless otherwise stated, “spectrum”, and its several forms, should

be taken to mean “gamma-ray energy spectrum,” as to avoid any confusion with

measurements based on neutrons, which are also observables from nuclear materials.

Neutron-based detection methods will not be analyzed in this thesis. Further, all of

the detection schemes discussed here are methods of passive detection.

The original methods presented in this paper are shown to be useful tools in

the area of nuclear material detection and are demonstrated to be improvements over

existing passive detection schemes. Areas that are improved upon are:

� robustness: detection schemes are applicable to a broader range of situations.

� accuracy: reduction in false alarms and of materials that go undetected.

� utility: specific materials are identified instead of just anomaly warnings.

Theoretical analyses, experimental results, and a review of relevant published works

support my claims. Algorithms and simulations, when applicable, are carried out

exclusively using MATLAB.
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1.1 Motivation for This Work

Roughly seven million containers of trade goods are entering the 361 seaports

of the United States per year, with most of the activity happening at the ports of

Los Angeles, Long Beach, and New York-New Jersey [18]. In fact, these ports are

operating on a 24/7 basis and processing over 11,000 containers per day, or eight

containers per minute. With the dissolution of the Soviet Union, the poor security

associated with its nuclear stockpile, and the War on Terror, the concern is that

terrorists will use any of these containers to smuggle special nuclear materials (SNM)

into the country. Experts have estimated the cost to the U.S. economy of port closures

due to the detonation of a weapon of mass destruction as $1 trillion. Hence, the

ultimate goal is to screen every container entering the U.S. and accurately determine

if the containers are housing nuclear materials, all while staying true to the fast

processing times. Therefore, detection schemes should be fast and reliable, as well as

safe, in order to prevent harm to those on scene.

The demand for uncovering smuggled nuclear materials has caused a flurry of

activity associated with the nuclear signatures of these materials. While a number of

active detection methods have been proposed which can detect quite small amounts

of material, they are ultimatley deemed unsafe because they involve potentially lethal

doses of some type of radiation delivered to the objects to be examined. This leaves

passive sensing as the primary candidate method.

Gamma-rays and neutrons are observables from nuclear materials allowing

for the possibility of passive sensing. Most neutron detectors are based off a non-
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radioactive isotope of helium. The global shortage of this isotope has steered re-

search in the direction of gamma-ray detection [39]. A number of both portable and

non-portable gamma-ray spectrometers are commercially available; all suitable for

such applications as checkpoint monitoring and nuclear searches where the detector

and potential source are close and the expected signal is relatively large so that the

gamma-ray signature peaks are well-resolved [4]. Gamma-ray signature recognition is

straightforward if signals are strong and high-resolution detectors can be used. Such

detectors allow for unambiguous identification of radioactive nuclides using photo

peak search algorithms [28]. However, these conditions cannot be reasonably as-

sumed for detection at seaports. Nuclear materials can be buried deep inside the

Figure 1.1: Detectors at seaports may not be close to potential sources which could

be deep inside the bed of cargo trucks.
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bed of cargo trucks, several meters away from detectors, as illustrated in Figure 1.1.

Further, there may exist a host of materials between the detector and possible nuclear

materials: the atmosphere, other cargo in the truck, and the truck itself. In this case,

the signals will be weak and difficult to discern from the background radiation or

from the signatures of naturally occurring radioactive materials (NORM). Moreover,

large detectors are required as to allow for timely detection. Unfortunately, as the

surface area of a detector increases, its spectral resolution decreases, and the defining

characteristics of spectra will be challenging to recover.

1.2 Characteristics of the Detector

Detection involves using detector elements to obtain data, and then converting

data to useful information via computer algorithms. An incoming photon’s energy

is converted to an electrical pulse that can be measured. This may rely on the

photoelectric effect, discussed in Section 2.1, and is the task of the detector hardware.

The pulses are sent to algorithms, and it is the algorithms’ job to convert the pulses

to an interpretable format.

Detectors will perform better when nuclear material signals are strong and

signal to noise ratios (SNRs) are high. That is to say, the signal (gamma-ray spectrum

of the nuclear material) cannot become too corrupted by the noise (random gamma-

ray spectrum of the background radiation), or else detection results will be unreliable.

Two concepts are central to gamma-ray detector sensitivity [27]: detection efficiency

and spectral resolution. Efficiency refers to the fraction of the signal a detector
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actually records. The number of photons radiated by the material per unit area

diminishes with distance according to the 1/r2 law. Since radioactive material emits

radiation in a three-dimensional sphere, using a detector that is larger or that is closer

to the material increases the efficiency. A more efficient detector collects data faster,

reducing processing times.

Figure 1.2: The spectrum of Pu239 as measured by different detector materials to

show the differences in spectral resolution.

Spectral resolution refers to the sharpness of peaks in a spectrum. A detector

with almost infinite resolution would show peaks as vertical lines with not much

thickness. In reality, detectors have a finite resolution and detected peaks look more
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like Gaussian functions - the poorer the resolution, the wider the peak, as shown

in Figure 1.2 [6]. High resolution detectors like high-purity germanium (HPGe) are

expensive, heavy, and inefficient [27]. On the other hand, if a low resolution detector

like sodium iodide (NaI) is used, then peaks from gamma-rays of different energies

may blur together, making identification of the material a difficult task.

There are two methods for transducing the gamma-ray energy into electrical

pulses [27]. One is with a scintillator material, such as sodium iodide. When a gamma-

ray interacts with the scintillator, the scintillator emits a large number of photons

of lower energy. A photomultiplier tube converts these photons to electrons, then

multiplies the electrons to generate a measurable pulse whose voltage is proportional

to the initial energy of the gamma-ray. The energy is resolved into a discrete energy

bin, or channel, and the count in said bin is increased by one. The second method is

with a semiconductor material. Without radiation, the semiconductor is configured

to act like an insulator. When radiation strikes the material, electrons are freed from

their electronic states in the atoms of the material. With the help of an electric field,

the charge can be collected and then recorded.

1.3 Background Radiation

Varying background radiation that results from changes in the environment

perhaps presents one of the biggest challenges to nuclear material detection. An ex-

ample background spectrum is shown in Figure 1.3. Naturally occurring sources of

gamma-rays can be classified into three different categories [32]: terrestrial, atmo-
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spheric, and cosmic-ray. Different minerals with various abundances of isotopes in

the Th232, U238 and K40 decay chains make up the terrestrial category. Th232 and

U238 have relatively long decay chains ending in lead, and K40 has a shorter decay

chain but can decay in one of two branches ending in two different isotopes: Ar40 or

Ca40. Radon gas, a member of the U238 decay chain, is released from the decay of

radium in the Earth’s soil and is classified as atmospheric background. The third cat-

egory, cosmic-ray, classifies the gamma-rays produced from from muon interactions

with the environment. Cosmic-ray background effects increase rapidly with altitude.

Figure 1.3: An example shape of a gamma-ray background spectrum. As time varies,

the vertical scale can fluctuate due to natural and anthropological factors, but the

overall shape will remain somewhat constant.
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In an urban setting, man-made structures such as bridges, tunnels, buildings

and roads will contain NORM [1]. It is important to note that while these variations

affect the total number of counts observed over the entire range of the detector, the

shape of the background spectrum remains somewhat constant over time at a fixed

location. This is due to the fact that many sources of environmental radiation possess

isotopes that vary proportionally to one another [1].

1.4 Overview of the Main Sections

The remainder of this thesis is organized as follows. In Chapter 2, I conduct

a review of significant published results that apply to nuclear material detection.

The review begins with physics concepts that explain the nature of observed spectra.

The photoelectric effect justifies the use of detectors in that it shows it is indeed

possible to accurately observe gamma-ray energies, and the Compton effect explains

some non-ideal characteristics in the detected gamma-ray spectra. After the physics

review, I provide a review of the detection techniques that are being applied today.

Eventually, I recast the problem of detection as a problem of variable selection and so

the literature review is concluded by examining common linear regression techniques.

An in-depth look at the least absolute shrinkage and selection operator (LASSO) and

its variants is conducted. Much of my original work starts with Chapter 3. This

chapter begins with how to model the output of a detector as a linear equation and

explains why variable selection and nuclear material detection are one in the same.

The performances of traditional methods are shown to be inadequate. I propose sev-
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eral types of detection algorithms, most based on the methods presented in Chapter 4,

and I compare them directly to the performances of the traditional methods as well

as to the performances of popular variable selection methods. Gamma-ray shielding

is addressed in Chapter 5, and my original methods are shown to perform well in

the presence of carbon, concrete, and water shields. Lead shielding is also examined.

In Chapter 6, in an attempt to make the detection methods more robust, I consider

applying the method of total least squares for cases when the spectral signatures of

the isotopes in question may not be known exactly. Chapter 7 provides summaries

and conclusions and also gives recommendations for future work. I relegate technical

proofs to Chapter 8 and supply my original MATLAB code in Chapter 9. Finally, all

of the sources used in this thesis are listed in the references section.
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CHAPTER 2
LITERATURE REVIEW

2.1 Physics Review

2.1.1 The Photoelectric Effect

Photons are packets of energy traveling at the speed of light with no rest mass

and no electrical charge. Electromagnetic radiation, e.g., gamma-rays, consists of

photons, and may be measured as a wavelength, frequency, or an energy. In the

latter part of the 19th century, experiments showed that photons incident on certain

metal surfaces caused electrons to be emitted from the surfaces. This phenomenon is

known as the photoelectric effect, and the emitted electrons are called photoelectrons

[35].

Figure 2.1 shows a diagram of an apparatus to observe the photoelectric effect.

A quartz tube holds two metallic plates, each connected to opposite terminals of a

power supply, V . In the absence of electromagnetic radiation, the ammeter reads zero.

However, when radiation is incident on the plate connected to the negative terminal, a

current can be detected, indicating a flow of electrons across the gap between the two

plates. The electrons are photoelectrons emitted from the emitter and collected by

the collector. When a large voltage is applied, the photoelectric current is saturated

and reaches a maximum value, as also shown in Figure 2.1. When V is negative,

the current drops to a very low value. Only those electrons having a kinetic energy

greater than the magnitude of e · V reach the collector, where e is the elementary
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charge. When V is equal to or more negative than −Vs, no photoelectrons reach the

collector and the current is zero. As the figure suggests, Vs is independent of the

radiation intensity. The maximum kinetic energy of the photoelectrons is related to

Vs by the relationship Kmax = e · Vs.

Figure 2.1: Left: Circuit diagram for observing the photoelectric effect. Light strikes

the emitter (E) and photoelectrons are ejected from the plate. Electrons moving from

the emitter to the collector (C) produce a current to be read by the ammeter. Right:

Photoelectric current versus applied voltage for two intensities. At voltages equal to

or more negative than −Vs, the current is zero.

Einstein showed that a photon is so localized that it gives all of its energy

E = hf to a single electron in the metal, where h is Planck’s constant and f is

the frequency of radiation. The maximum kinetic energy of a photoelectron can be
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Figure 2.2: A plot of Kmax of photoelectrons versus incident radiation frequency.

Photons with a frequency less than fc do not have enough energy to eject an electron

from the metal.

written as

Kmax = hf − φ (2.1)

where φ is called the work function of the metal. The work function is on the order

of a few electron volts, depending on the metal, and represents the minimum energy

with which an electron is bound in the metal. The graph of (2.1) versus frequency is

shown in Figure 2.2. The intercept of the frequency axis gives the cut-off frequency

fc = φ/h below which no photoelectrons are emitted, regardless of the radiation

intensity. The slope of the line is Planck’s constant h, and if the line were to extend,

the intercept of the Kmax axis would be −φ. Thus a series of graphs for different

metals would be a collection of parallel lines.

The photomultiplier tube is one application of the photoelectric effect and acts

like a switch in an electric circuit. It generates a current in the circuit when light of
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sufficiently high frequency is incident on a metallic plate but produces no current in

the dark. In a nuclear material detector, the scintillator reduces the energy of the

incoming gamma-ray photons to that of light (optical photons). The optical photons

are then sent to the photomultiplier tube to generate electrical signals.

2.1.2 The Compton Effect

The Compton Effect was first described by Arthur Holly Compton in 1923

to explain the shift in observed wavelength (frequency) of a scattered X-ray after a

collision with a free electron [8]. Compton explained that when one adopts a quantum

mechanical model of light, an increase in the observed wavelength of a photon after a

collision with a free electron can be predicted from conservation of energy (an elastic

collision) and is a function of the scattering angle (θ in Figure 2.3). This is important

to nuclear material detection as a scattered gamma-ray (photon) from an electron in

the detector material would report as having lower energy than would otherwise be

the case, and, if not accounted for, could produce detection errors.

To begin to explain the Compton Effect, assume the photon behaves like a

particle of zero mass and energy Eγ = hf = hc/λ, where h is Planck’s constant,

c is the speed of light, and f and λ are the photon’s frequency and wavelength,

respectively. The photon collides elastically with a free electron which is initially at

rest, as shown in Figure 2.3. Applying the principle of conservation of energy gives

hc

λi
=
hc

λf
+Ke (2.2)

where hc/λi is the energy of the incident photon, hc/λf is the energy of the scattered
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photon, and Ke is the kinetic energy of the electron after the collision. The speed of

the electron v may be comparable to that of light, so relativity must be taken into

account, i.e., Ke = γmec
2 −mec

2 where γ = 1/
√

1− v2/c2 and me is the mass of an

electron. So

hc

λi
=
hc

λf
+ γmec

2 −mec
2. (2.3)

One can then apply the law of conservation of momentum. For simplicity, consider

only two dimensional scattering. The magnitude of a photon’s momentum is given

by p = Eγ/c = hf/c = h/λ, and the momentum of the electron after the collision

is pe = γmev. By applying conservation principles in each direction, the following

expressions hold

x component :
h

λi
=

h

λf
cos θ + γmev cosφ (2.4)

y component : 0 =
h

λf
sin θ + γmev sinφ (2.5)

where the angles φ and θ are measured as in Figure 2.3.

Figure 2.3: Compton scattering of a photon by an electron. The collision reduces the

photon’s energy, thus the scattered photon has a larger wavelength.
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The angle φ and speed v can be eliminated in Equations (2.3)-(2.5) to obtain a

single expression that relates λi, λf and θ. After some algebra, the resulting equation

is known at the Compton shift equation

∆λ = λf − λi =
h

mec
(1− cos θ) (2.6)

and describes the change in wavelength as a function of the scattering angle. The

quantity h/mec = 0.00243 nm in equation (2.6) is called the Compton wavelength.

An illustration of this effect on intensity counts is shown in Figure 2.4.

Figure 2.4: Intensity counts for a Compton-scattered photon at various scattering

angles shown with the unscattered peak.

Prior to arriving at the detector, gamma-rays will naturally be scattered with
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various scattering angles – actually, an infinite amount of angles forming a continuum.

Since the amount of energy transmitted to the recoil electron is dependent on these

scattering angles, an energy continuum known as the Compton continuum will be

observed by the detector. The Compton continuum is shown in Figure 2.5.

Figure 2.5: Compton continuum showing the energy intensities of recoil electrons for

all possible scattering angles. The recoil electron cannot have energy more than the

Compton edge.

For each scattering angle θ, one can compute the energy transferred to the

electron (or, equivalently, the energy lost by the photon) Ke by the relationship

Ke = Eγ

(
1− 1

1 + Eγ(1−cos θ)

mec2

)
. (2.7)

The relationship follows directly from Equations (2.2) and (2.6). Observe from equa-

tion (2.7) that the maximum kinetic energy of the recoil electron occurs when the
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scattering angle is θ = 1800. This value

Ke,max =
Eγ

1 + mec2

2Eγ

< Eγ

is known as the Compton edge and is the theoretical limit to the amount of energy

able to be delivered to the electron by scattering. At the same time, it is the maximum

amount of energy that an incident photon can lose by scattering. It makes sense that

this maximum value is less than the initial energy Eγ.

2.2 Contemporary Detection Techniques

2.2.1 Traditional Peak Detection Algorithms

Nuclear material detection is relatively straightforward when signal to noise

ratio is large and high-resolution detectors can be used. In such cases, it is popular to

employ peak detection algorithms as the detection scheme; peak detection algorithms

like findpeaks.m, a MATLAB script developed at the University of Maryland [30],

are simple, have a fast run time, and are effective. There are several variations of

peak detection algorithms ([30], [37], [34], [26] [22]) but all rely on two main steps:

(1) differentiating the signal to find local extrema, and (2) identifying which extrema

are in fact peaks. Some algorithms go further and fit the peak to a Gaussian function

to determine the peaks’ heights and widths. The locations of the peaks are compared

to a library – an array that stores data representing the physical characteristics of

the possible threat nuclides – and a decision is made as to which, if any, materials

are present. Under shielding conditions, peaks in the observed gamma-ray spectrum

may not be obvious. Further, these kinds of algorithms are highly sensitive to noise
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and may not perform correctly under less than ideal conditions.

Any freshman calculus text will describe the procedure for finding the peaks of

a function: Observe when the first derivative has a downward-going zero-crossing, or

equivalently, determine the critical values of the function when the second derivative is

negative. Theoretically, this idea alone works perfectly, but in a realistic experiment,

however, the function will consist of random noise which can produce false zero-

crossings. In an effort to help combat noise, it is common practice to first smooth the

function and then look at its derivative’s zero-crossings. This method was described

in [26] where the derivative must be approximated by a difference because of the

discrete nature of the data.

The simplest smoothing filter is an unweighted averaging smoother; it replaces

each point in the signal that is within a feasible region with the average of m adjacent

points. A centered smoother with odd m > 1 is most common and has the form

ĥf(n) =
f(n) +

∑(m−1)/2
j=1

(
f(n− j) + f(n+ j)

)
m

(2.8)

with a feasible region of

N − m− 1

2
≥ n >

m− 1

2

where the signal to be smoothed is defined for 1 ≤ n ≤ N . Points that fall outside of

the feasible region are boundary points where the filter (2.8) is undefined. There are

several methods to dealing with boundary points: zero padding, reflection, periodic

repetition, even making the parameter m smaller as the boundary approaches. The

best method depends on the type of data, but all of the methods produce adequate

smoothing results.
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Though crucial to the overall effectiveness of the smoothing filter, the choice

of parameter m will not effect the location of the peak. A large m, relative to the

length of the peak, will only distort the peak by reducing the peak’s amplitude and

increasing its width [30]. Figure 2.6 shows the peak distortion for different smoothing

ratios; smoothing ratio is defined as the ratio of m to peak width.

Figure 2.6: Smoothed peaks using three different smoothing ratios. Smoothing the

peak does not change its location.

In the case of nuclear material detection, a larger m may be used since it is the

location of the peak and not necessarily the amplitude or the width that is important.

One must be careful not to increase m too large such that multiple peaks begin to

overlap.

The filter (2.8) is constructed of a sum of equal weighted terms and is some-
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times referred to as a rectangular filter. In fact, there is no need for the coefficients to

be equal; findpeaks.m can use the more generalized triangular filter (2.9) with feasible

region as in (2.10) (both shown with m = 5) which can increase signal to noise ratio

more so than its rectangular cousin.

f̂(n) =
1

9

(
f(n+ 2) + 2f(n+ 1) + 3f(n) + 2f(n− 1) + f(n− 2)

)
(2.9)

−2 ≥ n > 2 (2.10)

After the signal has been smoothed, an approximation of the derivative is

applied to the now (almost) noiseless signal. An approximation, for example the

centralized difference shown in (2.11), must be used because the input data is discrete.

A user threshold is then used to discriminate zero derivatives (local extrema) from

non-zero derivatives.

f
′
(n) =

f(n+ 1)− f(n− 1)

2
, 1 < n ≤ N − 1 (2.11)

The last step is to identify which local extrema are in fact peaks by observing

the algebraic sign of the second derivative: those extrema which have a corresponding

second derivative less than zero are indeed local maxima. Again, an approximation for

the second derivative must be used. A centralized approximation used in findpeaks.m

has the form

f
′′
(n) = f(n+ 1)− 2f(n) + f(n− 1), 1 < n ≤ N − 1

Nuclide identification is done by matching the energy location of the peak to a

list of energies in a nuclide library. Automatic calibration methods make knowing the
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energy location of a peak equivalent to knowing its channel location found by peak

detection algorithms [22]. A peak is assigned to a candidate nuclide if the library

entry for that nuclide is within a threshold (typically 1keV) of the identified energy.

The nuclide library is a list of gamma-ray energies with nuclide identifications such

as nuclide name, atomic number, and mass.

In situations where the signal to noise ratio is low, peak detection algorithms

perform poorly. An analysis of findpeaks.m was conducted in which the algorithm

was tested on a noise corrupted signal with an SNR of -10 dB. The simulation details

are explained in Section 3.2, and the results are put in proper context by comparing

them to results of other detection algorithms for the same simulations.

2.2.2 Energy Windowing Techniques

Use of an energy windowing algorithm, as described in [1] and [11], is to com-

pare the shape of the observed spectrum to that of the background and to quantify the

similarity or difference. This method can have a better performance than traditional

peak detection because the shapes of NORM spectra are very similar to that of the

background, as shown in the top panel of Figure 2.7 [11], while man-made isotopes,

such as SNM, have spectra with more low energy radiation, as shown in the bottom

panel of Figure 2.7.

More specifically, energy windowing is to divide the spectrum into windows

and add all the counts in each window to obtain a window number. The difference or

similarity to the background windows can be quantified by various methods. One such
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Figure 2.7: The spectral shape of gamma-ray background radiation as compared to

that of NORM (top) and of nuclear threats (bottom).

method normalizes the counts in each window by the total counts in a reference win-

dow and compare that normalized count to a corresponding background normalized

count. For instance, consider a source that emits only one energy and a window-

ing scheme dividing the spectrum into two parts: One window extending from the
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detection threshold to just past the Compton Edge (recall a mono-energetic photon

will produce a continuum of observed energies), and the second window containing

the high energy remains. One could choose the high energy window as the reference

window so the normalized window counts are:

REW =
NEW

NH

where NEW is the window count of a specific window and NH is the window count in

the high energy reference window. The background windows are normalized in the

same manner, with the same windows.

The next step is to compare each normalized window with the corresponding

normalized background window, and [11] chooses to alarm when

REW > RB + κσRB

where RB is the normalized background window, κ determines the sensitivity, and

σRB is the standard deviation of the normalized background window given as

σRB = RB

√
1

NLB

+
1

NHB

− 2ρ
√
NLBNHB

NLBNHB

(2.12)

where NLB and NHB are the unnormalized window counts for the lower energy win-

dow and the higher energy window, respectively, and ρ is the correlation coefficient

between NLB and NHB. Equation (2.12) is derived by linearizing RB = NLB/NHB

using a Taylor expansion approximation, applying propagation of uncertainty tech-

niques, and noting that the standard deviation σ is the square root of the number of

counts for Gaussian statistics [11]. For their experiments, the authors of [11] assume

maximal correlation, ρ = 1.
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The spectral comparison ratio (SCR) method [1], [31] is an energy windowing

technique that works to maximize threat discrimination by adjusting window param-

eters, e.g., window placement, to maximize a certain figure of merit. At the heart

of the SCR algorithm is a residual between a window’s observed count and its pre-

dicted count, with the prediction being based on a ratio of expectation values of two

windows. More precisely, the residual αij is

αij = Counti − Expectationi

Expectationj
· Countj (2.13)

where Count is the number of observed counts in a window, and Expectation is the

expected number of counts in a window which can be based on previous observations.

The number of windows is a variable which needs to be chosen. If the number

of windows is more than two, there will be multiple residuals. Specifically, for N

windows, there will be N − 1 linearly independent residuals. [1] goes on to develop

a figure of merit based on the popular Fisher Linear Discriminant [2] to discriminate

between the α of threats from the α of benign sources. The authors maximize the

figure of merit using Powell’s algorithm [33] to determine window placements for

maximal discrimination.

As an experiment, a target was buried in soil at different depths for producing

different classes of collected data sets. Soil, along with uranium ore, comprised the

background. The detector was a 10x10x40cm sodium iodide detector capable of

resolving spectra to 1024 energy channels ranging from 0 keV to 3260 keV. Four

energy windows were used, and a particle swarm optimization (PSO) [40] method

was further used to determine optimal window widths, i.e., not all window sizes were
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Table 2.1: Results from an experiment in which energy windowing techniques are

used to detect a target material from ore buried in soil.

Method Target Alarm Rate Nuisance Alarm Rate
Fixed Width 0.9405 0.2220
PSO 0.9702 0.1250

equal. The target was then replaced with a nuisance source of natural ore, also placed

at different soil depths, and the experiment was repeated. The target and nuisance

alarm rates are shown in Table 2.1 [40] with fixed window widths and PSO-chosen

widths. Unfortunately, the authors do not put their work in context by providing any

sort of signal to noise measurement. Regardless, energy windowing techniques cannot

say anything regarding the type of material being detected. Further, the utility of

energy windowing techniques is questionable given that the main assumption – the

defining characteristic of SNM is its abundance of low energy – is arguable under

modest shielding conditions, where low energy gamma-rays are easily attenuated [23].

2.3 Linear Regression Techniques

Chapter 3 describes how one can model the output of a nuclear material de-

tector as a linear equation. The problem of detecting the material is then recast

as a variable selection problem where the variables of interest are components of an

unknown sparse parameter vector. Thus this section reviews the many contributions

from various authors to the field of linear regression, and specifically variable se-



www.manaraa.com

26

lection, which will be applied in whole or in part to our nuclear material detection

problem.

Given a linear equation

Yn = Xnβ
∗ + Vn, (2.14)

or equivalently

Yn =

p∑
j=1

xjβ
∗
j + Vn,

Xn = (x1,x2, ...,xp), β∗ =


β∗1
β∗2
...
β∗p

 ,

where Vn = (V (1), ..., V (n))T ∈ <n is an independent and identically distributed

(i.i.d.) random noise sequence with zero mean and finite variance, Xn ∈ <n×p is the

regressor matrix with regressors xj, Yn = (y(1), ..., y(n))T ∈ <n is the output sequence

or the response sequence, and β∗ ∈ <p is the unknown parameter vector; one wishes

to gain some sort of knowledge about β∗, usually by estimating its parameters β∗j

and/or inferring its active set. The active set is the set A∗ = {j : β∗j 6= 0}, i.e.,

those β∗j ’s which are actively contributing to the observed data Yn. Estimating the

active set is known as variable selection.

Suppose β̂ = (β̂1, β̂2, ..., β̂p)
T is the estimate of β∗, and β̂j = 0, j = d+ 1, ..., p,

for some positive integer d. Then, one can trim off the irrelevant regressors from Xn

and build a model

Ŷn =
d∑
j=1

xjβ̂j

to predict the output.
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The desirable properties of variable selection are [12],[46]:

Pr{A = A∗} → 1, as n→∞ (set consistency) (2.15)

Pr{β̂j = β∗j } → 1, as n→∞, j = 1, ...d (parameter consistency). (2.16)

In other words, those non-zero β∗j ’s and zero β∗j ’s are correctly identified, and their

estimates grow closer to the true values as more data is available.

2.3.1 The Ordinary Least Squares Estimate

If the noise Vn corrupting the output sequence Yn is small, model (2.14) is

approximately Yn ≈ Xnβ
∗. The regressor matrix Xn is usually not square, so we

cannot take its inverse to solve for β∗. Instead, we can multiply from the left by XT
n ,

XT
n Yn ≈ XT

nXnβ
∗, and now take an inverse as XT

nXn is surely square. Assuming that

the inverse exists, we now have

β∗ ≈ (XT
nXn)−1XT

n Yn = β̂LS. (2.17)

β̂LS is known as the ordinary least squares estimate, or simply the least squares

estimate, and can also be written equivalently as

β̂LS = β∗ + (XT
nXn)−1XT

n Vn.

Because of its closed-form solution, the popular least squares estimate is efficient

computationally. Geometrically, the least squares estimate is a projection onto the

linear space spanned by the regressors and satisfies

β̂LS = argmin
β
||Yn −Xnβ||2,
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where || · ||2 is the Euclidean norm.

Though the least squares estimate is convergent [14], i.e., properties (2.15) and

(2.16) are satisfied at n = ∞, this estimate does not solve the problem of variable

selection [5]. In practice, the number of data points never reaches infinity, and the

least squares estimate is unlikely to force the estimates to zero for those j for which

β∗j = 0. The result is many uniformly small estimates, and, without knowing d,

determining how small is actually zero is impossible.

2.3.2 Regularized Ordinary Least Squares

The least absolute shrinkage and selection operator (LASSO) [38] is a popular

technique for variable selection in linear regression models because, unlike ordinary

least squares, it can produce a sparse estimate. The sparsity of a LASSO-generated

estimate is a result of employing an L1-type penalty on the unknown coefficients by

minimizing

J(β) = ||Yn −Xnβ||22 + t

p∑
j=1

|βj| (2.18)

where t ≥ 0 is the regularization parameter that works to keep a balance between the

two terms in (2.18). The much involved task of selecting an appropriate t is discussed

in Section 2.3.5. In an orthogonal design, it is easy to see the utility of LASSO to

produce sparse estimates where the solution is [38]

β̂j = sign(β̂LSj)(|β̂LSj| − t/2)+, j = 1, ..., p

where β̂LSj is the jth component of the least squares estimate β̂LS, and (x)+ = x, x >

0; 0, x ≤ 0.
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In 2006, it was shown [44] that the LASSO is not a so-called oracle procedure

as it does not enjoy the desirable properties of model selection (2.15) and (2.16).

Specifically, [44] showed that a (almost necessary and) sufficient condition for LASSO

consistency is

|cn(2, 1)c−1
n (1, 1)s| ≤ 1− εn (2.19)

where cn(1, 1) = 1
n
(x1, ...,xd)

T (x1, ...,xd), cn(2, 1) = 1
n
(xd+1, ...,xp)

T (x1, ...,xd), s =

(sign(β∗1), ..., sign(β∗d))
T , εn > 0, εn → 0 as n → 0, and the inequality is understood

component-wise. In general, the irrepresentable condition (2.19) is not satisfied and

LASSO is not consistent. Nevertheless, the simplicity of the LASSO motivates its

continued use and the creation of its variants.

2.3.3 Least Angle Regression (LARS)

The question still remains as to how to solve the LASSO minimization problem

(2.18). Least angle regression (LARS) [9] is an algorithm that can efficiently compute

the LASSO solution path for every value of t in (2.18). The LARS algorithm begins

with all coefficients equal to zero and builds a model by successively introducing one

variable at a time, all while updating the least squares fit and the L1-norm defined as

|β̂1|+ |β̂2|+ ...+ |β̂p| =
p∑
j=1

|β̂j|. (2.20)

The generated estimates are built in successive steps so that after k steps only k of

the β̂j’s are non-zero. Denote the active set during the kth step as Ak. The current

prediction is given by

µ̂k =
∑
j∈Ak

xjβ̂j
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where β̂ = (β̂1, ..., β̂p)
T is the current candidate vector of regression coefficients.

The order in which the variables are introduced depends on their respective

predictors’ correlation with the current residual: The variable with a corresponding

predictor of the highest correlation will be introduced next. What makes LARS

a more efficient algorithm than its predecessors, e.g., forward stagewise [21], is the

notion that each variable is introduced with only as much of a predictor as it deserves;

the coefficient of the current predictor is increased only up to the point where another

predictor has as much correlation with the current residual. This new predictor’s

coefficient is introduced and both coefficients are increased along the path that bisects

the angle formed by the two predictors. The process is repeated until all of the

predictors have been introduced.

Figure 2.8: Geometric interpretation of the LARS algorithm with p = 2 coefficients.

For clarity, consider an example with p = 2 coefficients. The algorithm begins
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with µ̂0 = 0, as the response has been standardized to have zero mean. Project the

response, Yn, onto the two dimensional space spanned by x1 and x2. Figure 2.8 has

the projection ȳ2 closer to vector x1 than x2, i.e., ȳ2− µ̂0 makes a smaller angle with

x1 than with x2. LARS then augments the initial prediction µ̂0 along the direction

of x1 to µ̂1 = µ̂0 + γ1x1.

Algorithm 2.1 Least Angle Regression Algorithm

1. Standardize the predictors to have zero mean and variance 1. Start with the

residual r = Yn − ȳ, β1, ..., βp = 0.

2. Find the predictor xj most correlated with r.

3. Move βj from 0 towards its least-squares coefficient 〈xj, r〉, until some other

competitor xk has as much correlation with the current residual as does xj.

4. Move (βj, βk) in the direction defined by their joint least squares coefficient

of the current residual on 〈xj,xk〉, until some other competitor xl has as much

correlation with the current residual.

5. Continue in this way until all p predictors have been entered. After p steps,

the full least squares solution is obtained.

Forward stagewise would choose γ1 equal to some small user-defined param-

eter and repeat many times. This would result in a staircase path typical of the
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forward stagewise algorithm. Classic forward selection algorithms would choose γ1

large enough for µ̂1 to equal ȳ1, the projection of Yn onto x1 [9]. LARS chooses an

intermediate value that makes ȳ2 − µ̂1 equally correlated with x1 and x2. That is to

say that LARS chooses γ1 such that θ, the angle ȳ2 − µ̂1 makes with x1, is equal to

θ’, the angle ȳ2 − µ̂1 makes with x2. Then the estimate is updated as

µ̂2 = µ̂1 + γ2u2

where u2 has unit length. In this case γ2 is increased such that µ̂2 = ȳ2, but when

p > 2, γ2 would only be increased until the next predictors equally correlated, and so

on. Algorithm 2.1 [20] provides a summary.

Figure 2.9: The coefficient profile generated by LARS in an example concerning ten

variables. The predictors are standardized to have mean zero and variance 1. The

coefficients are given on their original scale, on which the details are more clear.
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Algorithm 2.2 LASSO Modification to the LARS Algorithm

5a. If a non-zero coefficient hits zero, drop it from the active set and recompute

the current joint least squares direction.

As described above, the algorithm introduces one variable at a time, all while

keeping track of the L1-norm (2.20). One can then construct a graph of the magni-

tudes of the coefficients versus the L1-norm. In a simulated example of ten variables,

[20] arrives at the coefficient profile shown in Figure 2.9 [20]. Upon inspection of the

profile, one could make the conclusion that variables 1 and 2 are important, i.e., they

greatly affect the observed data, because they are the first variables to be introduced,

and variables 3 through 10 are unimportant. A different person might conclude that

variables 1 through 3 are important and variables 4 through 10 are unimportant. Yet

another person may observe the large gap between the introductions of variables 6

and 7 and conclude that variables 1 through 6 substantially contribute to the data

and variables 7 through 10 do not. The first person would have limited the L1-norm

by the dotted line shown in Figure 2.9, the second person with the dashed line shown

in the same figure, and the last person would have limited the L1-norm somewhere

around 40 (between the introductions of variables 6 and 7). If the L1-norm is unlim-

ited, then the LARS estimate approaches the ordinary least squares estimate. The

idea of limiting the L1-norm for the purpose of variable selection is the very idea

behind LASSO, and the LARS method can generate the entire solution path of the
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LASSO with one simple modification outlined in Algorithm 2.2 [20].

2.3.4 More Selection Operators

2.3.4.1 Adaptive LASSO

LASSO (2.18) can be efficiently solved for every parameter t using the LARS

algorithm. Nevertheless, whether it can capture the true index set A∗ depends on

condition (2.19). Observe that the condition depends only on the data Xn and,

in general, is not satisfied. However, a non-negative weighting vector w may be

introduced into the LASSO minimization

J(β) = min
β
||Yn −Xnβ||22 + t

p∑
j=1

wj|βj| (2.21)

or equivalently,

J(β) = min
β
||Yn −

p∑
j=1

xjβj||22 + t

p∑
j=1

wj|βj|

where

0 ≤ w =


w1

w2
...
wp

 =



w11
...
w1d

w21
...

w2(p−d)


∈ <p,

and d is unknown. Now, the irrepresentable condition (2.19) becomes

|anj| ≤ w2j − εn, j = 1, ..., p− d

where an = cn(2, 1)c−1
n (1, 1)ŝ and ŝ = (w11sign(β∗1), w12sign(β∗2), ..., w1dsign(β∗d))

T . It

is interesting to observe that now the condition depends on the choice of the weights

w1j and w2j and can be satisfied if the weights were chosen in such a way that w1j’s
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are small and w2j’s are large. Of course, the problem is that it is not known which

β∗ = 0 and which β∗ 6= 0. To overcome this, the adaptive LASSO [46] uses the idea

of data-dependent weights.

For any γ > 0, define the components of the weight vector as wj = 1/|β̂LSj |γ.

As the sample size grows, the weights for the zero coefficients w2j grow without bound,

whereas the weights for the non-zero coefficients w1j are bounded. Then, under the

convergence rate assumptions that t/
√
n→ 0 and tn(γ−1)/2 →∞ as n→∞, the set

estimated by the adaptive LASSO, A, is one such that A = A∗ in probability [46].

Just like LASSO, the adaptive LASSO is a convex optimization problem; it

does not suffer from issues arising from local minima, and the global minimizer can

be efficiently solved. The efficient algorithms used to solve the LASSO (e.g., LARS)

can be used to solve the adaptive LASSO, i.e., Algorithm 2.3.

Algorithm 2.3 LARS Algorithm for the Adaptive LASSO

1. Define xj
∗∗ = xj/wj, j = 1, ..., p

2. Solve the LASSO problem for all t,

β̂∗∗ = argminβ

{
||Yn −

∑p
j=1 xj

∗∗βj||22 + t
∑p

j=1 |βj|
}

.

3. The jth component of the adaptive LASSO estimate is β̂∗∗/wj, j = 1, ..., p
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2.3.4.2 Group LASSO

Often times in variable selection it is desirable to select variables that are

grouped together. Such cases arise naturally in many situations, nuclear material

detection included. In these situations, the mechanics of any variable selection algo-

rithm should be such to encourage the selection of entire groups of variables instead

of the selection of individual ones. Thus variable selection methods like LASSO and

LARS are sub-optimal when variables are grouped [42].

In the case of nuclear material detection, the unknown intensity vector β∗ in

(2.14) describes the strength of some candidate isotopes which may or may not be

present. Each candidate isotope may have more than one relevant spectrum as decided

by its branching ratios. These are its sub-spectra, as described in Section 5.1, and

their unknown intensities are included in β∗. Thus a group variable selection method

may be applied with a group consisting of all sub-spectra of a parent isotope.

All of the regression analysis thus far can be viewed as regression with p groups,

each group consisting of exactly one element. Now consider each group to have Kj

elements, j = 1, ..., p. The linear model (2.14) can be written as

Yn =

p∑
j=1

Xjnβ
∗
j + Vn (2.22)

where Xjn ∈ <n×Kj and β∗j is a vector of length Kj. Furthermore, denote ||ν||D =

√
νTDν for a vector ν of length Kj and a symmetric matrix D > 0. Assume the

response has had its mean subtracted off and that each Xjn is orthonormalized.

Then, given matrices D1, ..., Dp > 0, the group LASSO [42] estimate is the estimate
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that minimizes

J(β) =
1

2
||Yn −

p∑
j=1

Xjnβj||22 + t

p∑
j=1

||βj||Dj . (2.23)

If Dj’s are identity matrices of dimension Kj, the solution to (2.23) has the compo-

nents

β̂j =
(

1− t

||Sj||I

)+

Sj,

where Sj = XT
jn(Yn −Xnβ̂−j), with β̂−j = (β̂T1 , ..., β̂

T
j−1, 0

T , β̂Tj+1, ..., β̂
T
p )T .

The penalty function in (2.23) is an intermediate one between the L1 penalty

used in LASSO and the L2 penalty used in other regressions (e.g. ridge regression).

This is illustrated in Figure 2.10 [42] where the Dj’s are identity matrices. Note that

use of the L2 penalty in regularized linear regression problems is known to yield all

non-zero estimates. Consider the case when there are p = 2 groups. The first group,

β1 = (β11, β12)T , is of length two. The second group is of length one and is denoted

as β2. The top row in Figure 2.10 shows the contours of the penalty functions: the

left corresponds to the L1 penalty |β11| + |β12| + |β2| = 1, the center corresponds

to the group LASSO penalty ||β1||2 + |β2| = 1, and the right corresponds to the L2

penalty ||(βT1 , β2)T ||2 = 1. Cross sections are shown in the last three rows. As shown

in Figure 2.10, the L1 penalty treats the three coordinate directions differently from

other directions, and this encourages sparsity. The L2 penalty treats all directions

equally and does not encourage sparsity. The group LASSO encourages spareness at

the group level.
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Figure 2.10: The L1 penalty (left), the group LASSO penalty (center) and the L2

penalty (right).
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2.3.4.3 Positive LASSO

In nuclear material detection, where the unknown intensities cannot possibly

be negative, the performance of LASSO can be much improved by incorporating the

a priori information β∗j ≥ 0 directly into the LASSO minimization, resulting in the

positive LASSO [9]:

J(β) = min
β≥0

{
||Yn −Xnβ||22 + t

p∑
j=1

βj

}
(2.24)

where β ≥ 0 stands for βj ≥ 0, j = 1, ..., p. The positive LASSO is briefly mentioned

in [9] where it is explained how to modify the LARS algorithm to conveniently solve

the positive LASSO problem for all t, though the authors fail to work through an

example. In fact, though the positive LASSO (2.24) can be solved efficiently, it has

yet to be thoroughly explored.

2.3.4.4 Non-Negative Garrote

Another technique for variable selection, the non-negative garrote, produces a

scaled version of the least squares estimate [43]. The scaling factor d = (d1, ..., dp)
T

is given as the minimizer to

||Yn − Zd||22 + t

p∑
j=1

dj, dj ≥ 0, j = 1, ..., p,

where Z = (Z1, ..., Zp), Zj = Xjnβ̂LSj. The non-negative garrote estimate is then

β̂NGj = djβ̂LSj , for j = 1, ..., p. In the orthogonal case when XT
nXn = I, the compo-

nents of the scaling vector d have the explicit form

dj =
(

1− t

β̂2
LSj

)+

, j = 1, ..., p.
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Solving the non-negative garrote for every value of t ≥ 0 may be done efficiently

by modifying the LARS algorithm. A concern about the nonegative garrote is its

explicit reliance on the full least squares estimate. With a small sample size, the least

squares may perform poorly, and the non-negative garrote will suffer too.

2.3.5 Determining the Model Dimension

As we have seen, the LARS algorithm is able to produce the entire solution

path of LASSO for every value of t in (2.18), see Figure 2.9. The variables are

introduced one at a time until all variables are non-zero and the least squares estimate

is obtained. Consider a correct solution path to be one in which the LASSO profile

generated by LARS contains the true underlying model. That is to say, if the true

underlying model is A∗ = {j : β∗j 6= 0}, then the first variables to be introduced by

LARS are of the set A∗. Then, in the presence of a correct solution path, the best

choice of the regularization parameter topt would be one that hopefully generates an

estimated set A = A∗. Further, topt could change with the number of data points n.

If the regularization parameter were to be held constant as the number of data points

increased, the first term in (2.18) would dominate, and the LASSO solution would

be very close to that of the least squares estimate. If t is too large, the estimate gets

forced to all zero components. Thus, the selection of the regularization parameter is

crucial to LASSO’s success. The same argument can be made for adaptive LASSO,

group LASSO, positive LASSO and the non-negative garrote.

Cross validation or an information-based criterion like AIC or BIC [36] may be
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effective in determining topt. The former is a technique that is used to determine how

well a model will generalize to an independent data set, while the latter is a measure

of the goodness of fit of a model. As illustrated in Figure 2.11, M-fold cross validation

is the process of partitioning the data set into M data sets, where one of the sets

is used for testing and the others are used for training. Modeling prediction errors

are calculated from the test data, and the process is repeated M times with a new

training set each time. The results are averaged together, and the t corresponding

to the model with the smallest average cross validation prediction error is selected as

topt.

Specifically, let the partitioned data set pairs be represented as (X
(1)
n , Y

(1)
n ),

(X
(2)
n , Y

(2)
n ),..., (X

(M)
n , Y

(M)
n ). Let the pair (X

(−k)
n , Y

(−k)
n ) be the regressor matrix

Xn with data X
(k)
n removed and the output sequence Yn with data Y

(k)
n removed,

respectively. For a given t, the generated LASSO estimate with the kth partition

removed is

β̂(−k) = min
β

{
||Y (−k)

n −X(−k)
n β||22 + t

p∑
j=1

|βj|
}
.

Then the estimate β̂(−k) produces the cross validation prediction error

CVk(t) = ||Y (k)
n −X(k)

n β̂(−k)||22, k = 1, ...,M.

The best t is the one that minimizes the average cross validation prediction error

topt = argmin
t

1

M

M∑
k=1

CVk(t).

The same analysis applies to LASSO’s variants and the non-negative garrote.
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Figure 2.11: M-fold cross validation for determining the regularization parameter

t. Each t leads to an average cross validation prediction error. Choose the t that

minimizes this error.

AIC and BIC may also be used to determine the true dimension of the un-
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derlying model. For a given t, suppose the estimate generated by LASSO or the

non-negative garrote is β̂ and the number of non-zero components of that estimate is

q. The best t according to AIC and BIC is

topt = argmin
t

{
n · ln ||Yn −Xnβ̂||22

n
+ αq

}
(2.25)

where α = 2 for AIC and α = ln(n) for BIC [36]. BIC is consistent in the sense that

it was designed to identify the true dimensionality of the underlying model [41]. AIC

is not consistent but has lower mean squared error [41]. Therefore, one must make a

decision between consistency and minimizing prediction errors.
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CHAPTER 3
DETECTION AS LINEAR REGRESSION AND THE LASSO

APPROACH

3.1 Modeling Gamma-Ray Emission

Radioactive sources randomly emit gamma-rays, and a Poisson distribution

characterizes the number of gamma-ray counts, k, registered by a detector per unit

time and per unit amount of source material [5] according to ((λ)k)/k!)e−λ. The

distribution parameter λ mainly depends on the type of radioactive decay of the

source, the characteristics of the detector material, and some environmental effects

such as temperature and the position of the detector relative to the source. When β∗

units of radioactive source material are present, the number of counts continues to

follow a Poisson distribution

z ∼ ((λβ∗)k)/k!)e−λβ
∗
.

The source material is considered absent when β∗ = 0. A convenient property

of Poisson random variables ensures the mean E(z) be equal to the variance E((z −

λβ∗)2), where E is the expectation operator. The mean and variance of z is λβ∗.

When more than one radioactive source is present, the number of counts recorded

by the detector is the sum of the contributions from all of the sources, including the

background.

When p radioactive sources are present, each modeled as a Poisson random

variable

((λiβ
∗
i )
k)/k!)e−λiβ

∗
i , i = 1, ..., p,
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it may be reasonably assumed that the contributions of each individual source is

statistically independent. Then, yet another convenient property of Poisson random

variables [3] suggests that the total gamma-ray count is also Poisson distributed

z ∼ (
∑p

i=1 λiβ
∗
i )
k

k!
e−

∑p
i=1 λiβ

∗
i , (3.1)

where the mean and variance of (3.1) are both
∑p

i=1 λiβ
∗
i .

The above analysis applies to each range of energy (keV) of the gamma-ray

spectra. If a detector has n energy channels, then the gamma-ray counts Z =

(z1, z2, ...zn)′ is a random vector, and the gamma-ray counts in the ith channel, zi,

follows a Poisson distribution

zi ∼
(λi1β

∗
1 + λi2β

∗
2 + ...+ λipβ

∗
p)
k

k!
e−(λi1β

∗
1+λi2β

∗
2+...+λipβ

∗
p), i = 1, 2, ..., n (3.2)

where the vector (λ1i, λ2i, ..., λni)
T is the spectrum of the ith radioactive source.

Define

λ =

λ11 . . . λ1p
...

. . .
...

λn1 . . . λnp

 , β∗ =

β
∗
1
...
β∗p

 (3.3)

where (λi1β
∗
1 +λi2β

∗
2 +...+λipβ

∗
p) is the mean gamma-ray counts per unit time received

by the detector at the ith spectrum channel from all radioactive sources. With a slight

abuse of notation, the random gamma-ray counts vector Z may be expressed as

Z =


z1

z2
...
zn

 ∼ (λβ∗)ke−λβ
∗

k!

where e−λβ
∗

and (λβ∗)k are calculated component-wise. When the numbers of gamma-

ray counts at different channels are independent the mean value and the variance of
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Z are

EZ = λβ∗ =

λ11 . . . λ1p
...

. . .
...

λn1 . . . λnp


β

∗
1
...
β∗p


and

E(Z − λβ∗)(Z − λβ∗)T =

λ11β
∗
1 + ... + λ1pβ

∗
p 0 . . . 0

0 λ21β
∗
1 + ... + λ2pβ

∗
p . . . 0

.

.

.

.

.

.
.
.
.

.

.

.
0 0 . . . λn1β

∗
1 + ... + λnpβ

∗
p

 .

Let Zi, i = 1, 2, ..., l, be l independent observations of Z. Define the empirical

average of Z by

Z̄ =
1

l

l∑
i=1

Zi

that satisfies

Z̄ = λβ∗ +
1

l

l∑
i=1

Zi − EZ︸ ︷︷ ︸
V̄

= λβ∗ + V̄ (3.4)

which is cast in a linear regression form and can be used to estimate the strength

coefficients vector β∗ where Z̄ is available from measurements, the relative magnitude

matrix λ is known a priori for given radioactive sources, and V̄ is a random variable

which can be considered as noise.

It is easy to verify the mean and variance of V̄ as

EV̄ =
1

l

l∑
i=1

EZi − EZ = 0,

and

EV̄ V̄ T =
1

l

l∑
i=1

E(Zi − λβ∗)(Zi − λβ∗)T

=
1

l


λ11β

∗
1 + ...+ λ1pβ

∗
p 0 . . . 0

0 λ21β
∗
1 + ...+ λ2pβ

∗
p . . . 0

...
...

. . .
...

0 0 . . . λn1β
∗
1 + ...+ λnpβ

∗
p

 .
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Notice that
∑l

i=1 Z
i is also Poisson. If the gamma-ray counts are high, the Poisson∑l

i=1 Z
i is very close to a Gaussian distribution [3]. In other words, the noise V̄ is

close to a multivariate Gaussian of zero mean. Moreover, by the properties of the

Gaussian distribution, the components of V̄ are independent if V̄ are Gaussian.

For detection, equation (3.4) could be used to determine the unknown source

strength coefficient vector β∗ where Z̄ is available from detector measurements and

λ can be determined a priori. Detection now is to find out which β∗i ’s are zero

and which are not; β∗i = 0 indicates that the ith radioactive source or material is

absent, otherwise, the material is considered to be present. In general, the available

background radiation information can and will be included in λ and β∗. Although the

components of the noise V̄ are of zero mean and almost Gaussian and independent,

their variances are not identical, and having i.i.d. noise is preferable. If λβ∗ were

available, we could scale Z̄ by 1√
λ11β

∗
1+...+λ1pβ

∗
p

. . . 0

.

.

.
.
.
.

.

.

.

0 . . . 1√
λn1β

∗
1+...+λnpβ∗p

 Z̄ =

 1√
λ11β

∗
1+...+λ1pβ

∗
p

. . . 0

.

.

.
.
.
.

.

.

.

0 . . . 1√
λn1β

∗
1+...+λnpβ∗p

λβ∗

+


1√

λ11β∗1+...+λ1pβ∗p
. . . 0

...
. . .

...
0 . . . 1√

λn1β∗1+...+λnpβ∗p

 V̄

and note that the noise


1√

λ11β∗1+...+λ1pβ∗p
. . . 0

...
. . .

...
0 . . . 1√

λn1β∗1+...+λnpβ∗p

 V̄ would have iden-

tical variance for each component. Though λβ∗ is unobtainable, its estimate Z̄ is

however available. To reduce the effect of non-constant variance, equation (3.4) is
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scaled by
1√
z̄1

. . . 0
...

. . .
...

0 . . . 1√
z̄n


z̄1

...
z̄n


︸ ︷︷ ︸

Yn

=


1√
z̄1

. . . 0
...

. . .
...

0 . . . 1√
z̄n

λβ∗

︸ ︷︷ ︸
Xn

+


1√
z̄1

. . . 0
...

. . .
...

0 . . . 1√
z̄n

 V̄

︸ ︷︷ ︸
Vn

,

or simply

Yn = Xnβ
∗ + Vn

where

Yn =

y1
...
yn

 , Xn =

x11 . . . x1p
...

. . .
...

xn1 . . . xnp

 =

x
T
1
...
xTn

 , β∗ =

β
∗
1
...
β∗p

 , Vn =

v1
...
vn

 ,

which is exactly equation (2.14).

Yn and Xn are available, as they are scaled versions of the gamma-ray counts Z̄

and λ, respectively. Vn is noise of zero mean and almost i.i.d. Gaussian components.

Equation (2.14) is the basic equation for detection.

3.2 Peak Detection Performance

Several versions of peak detection algorithms exist, but they all rely on the

same basic steps: locate peaks; fit each peak to a Gaussian function with some width,

position, and height; and then match the energy of the photo peak to a list of energies

in a nuclide library [22]. The key is a peak location algorithm that has some advanced

smoothing functions with varying smooth windows to combat data fluctuations due

to noise, as discussed in Section 2.2.1. The size of the smoothing window serves the

purpose of balancing the peak detection sensitivity and the sensitivity to the noise.

If signals are strong and high-resolution detectors can be used, gamma-ray

signature recognition is straightforward by peak detection algorithms [28]. However,
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in a number of applications in which the detectors cannot reasonably be expected

to be close to the sources, the detectors generally have large surface area and poor

resolution. The signals from these detectors will be weak and difficult to separate

from the background radiation or from the signatures of commonly used radioactive

materials. In such cases, peak detection algorithms do not work well, as illustrated

in the next example.

Consider a semi-real experiment where a germanium type of detector with

n = 1024 channels is used and the background is a real measurement which consists

primarily of trace amounts of radiation from local sources and cosmic rays. The

gamma-ray counts of the 11 isotopes shown in Table 3.1 are synthetically generated

according to nuclear physics posted on the web-site of the National Institute of Stan-

dards and Technology or equivalently by the handbook of [22]. The background is

considered as the 12th isotope in the simulation. For a germanium type of detector

capable of resolving spectra to 1024 channels, the mean gamma-ray counts for the

isotopes in Table 3.1 are well documented which provides λ in equation (3.4) as shown

in Figure 3.1.

Figure 3.2 illustrates the scheme under which detection performances will be

tested. In simulation, the coefficients β∗12 of the background and β∗9 of I131 are set

to be one, and the coefficient β∗1 for Pu239 is equal to 0.2. All of the other β∗i ’s

are zero. Simply put, the background and I131 are present and dominant. Pu239,

a special nuclear material, is also present, but its low energy lines are hiding in the

low energy lines of the more dominant I131. The top diagram of Figure 3.3 shows
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Figure 3.1: Gamma-ray emission spectra of the 12 isotopes used in testing as resolved

by a germanium type of detector with 1024 channels.

the mean gamma-ray counts of the background+I131 per unit time for channels one

through 1024 and the mean gamma-ray counts of the background+I131+0.2Pu239.

The addition of Pu239 is hardly visible, as the plutonium barely contributes to the

observed gamma-ray spectrum. The bottom diagram of Figure 3.3 is a close-up one

together with the mean gamma-ray counts of Pu239 per unit time. The signal to

noise (background) ratio is calculated by summing up the energy at all frequencies
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Table 3.1: The 11 isotopes involved in testing of a semi-real experiment (background

radiation is considered the 12th isotope).

Isotope Half-life Notes
1 Pu239 24,000 years special nuclear material
2 Ga67 3 days uses include medical imaging
3 Cs137 30 years sometimes used in cancer treatments
4 U235 7 ×108 years special nuclear material
5 K40 1 ×109 years used in potassium-argon dating
6 Na22 3 years used for instrument calibration
7 Ba133 10 years used as a radioactive tracer
8 Ce139 138 days used for instrument calibration
9 I131 8 days treatment for hyperthyroidism
10 Co57 272 days used for instrument calibration
11 Co60 5 years disinfectant of surgical equipment
12 Background n/a NORM and cosmic rays

by varying α,

SNR(α) = 10 log

∑1024
i=1 α(0.2Pu239(i) + I131(i))∑1024

i=1 Background(i)
. (3.5)

The detection problem is to find which β∗i are non-zero or equivalently which

isotopes are present. It is obvious that all the signature peaks generated by Pu239

are buried in the background or in I131 and are invisible which implies that tradi-

tional peak detection methods will not work well. To test, I used an advanced peak

detection algorithm developed at the University of Maryland [30] called findpeaks.m

in MATLAB. Figure 3.4 shows the result of traditional peak based detection methods

at an SNR of -10 dB. The top panel in Figure 3.4 shows the peaks detected (black

circles) when Pu239 is absent, and the bottom panel shows the peaks detected when

Pu239 is present. The peaks detected with and without Pu239 remain the same. This
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Figure 3.2: The testing scheme is as follows: A relatively dominant background is

established (top panel). Then, a trace amount of the special nuclear material Pu239

is introduced (middle panel). Finally, the addition of I131, which has a low energy

signature, attempts to mask the low energy signature of Pu239 (bottom panel).



www.manaraa.com

53

Figure 3.3: A visualization of just how little the addition of Pu239 contributes to the

overall received gamma-ray spectrum. The received spectrum of I131 + backgound

shown together with the received spectrum of I131 + background + Pu239 (top).

The two spectra seem almost indistinguishable until a closer inspection of the low

energy channels is given (bottom).
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implies the traditional methods completely fail to find Pu239 at an SNR of -10 dB

in this experiment. The simulation is repeated with a less sensitive peak detector,

shown in Figure 3.5), but the conclusion is the same.

3.3 LASSO Detection Performance

To overcome the problem of detecting invisible peaks, variable selection meth-

ods may be used based on model (2.14). Recall that the primary goal of detection is

not to estimate the magnitude of each component β∗i , i = 1, 2, ..., p, but to find out

if β∗i is zero or not – referred to as variable selection in the literature.

Equation (2.14) is in a standard linear equation form for the unknown vector

β∗. Let β̂ denote the estimate of β∗. It is well known that the least squares estimate

(2.17) does not solve the problem of variable selection. Instead, I consider the LASSO

(2.18) due to its convenience and simplicity, as well as its range of applicability.

For the LASSO method, the choice of the tuning parameter t is critical. In

general, the choice of t is based on the well established AIC (Akaike Information Cri-

terion) and BIC (Bayesian Information Criterion) [36]. To emphasize the dependence

on t, write the estimate derived from equation (2.18) for a given t as β̂(t). For each t

and β̂(t), let q(t) be the number of non-zero components of β̂(t). If no component of

β̂(t) is zero, q(t) = p, the dimension of β∗, and q(t) = 0 if all the components of β̂(t)

are zero.

Using β̂(t) and q(t), the optimal t according to the AIC or BIC is given by equa-

tion (2.25): The LASSO-AIC estimate is the estimate derived from equation (2.18)
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Figure 3.4: Top panel: The detected peaks in the received spectrum of I131 + back-

ground for a window size of three are shown as black circles. Introducing Pu239

(bottom panel) does not change the location or amount of detected peaks. This re-

sult suggests peak detection algorithms fail to find the Pu239, even with a modest

SNR of -10 dB.
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Figure 3.5: Top panel: The detected peaks in the received spectrum of I131 + back-

ground for a window size of seven are shown as black circles. Introducing Pu239

(bottom panel) does not change the location or amount of detected peaks. This re-

sult suggests peak detection algorithms fail to find the Pu239, even with a modest

SNR of -10 dB.
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when t is chosen from equation (2.25) for α = 2 while the LASSO-BIC estimate is the

one derived from equation (2.18) when t is chosen from equation (2.25) for α = ln(n).

Both AIC and BIC estimates can be efficiently calculated [47].

To illustrate the performances of LASSO-AIC and LASSO-BIC, consider the

same simulation study discussed previously where the mean gamma-ray counts pro-

vide λ in equation (3.4) as shown in Figure 3.1 and further in equation (2.14) after

scaling. The simulation is based on model (2.14) with l = 5 and n = 1024. In simula-

tion, the number of gamma-ray counts are generated according to Poisson distribution

(3.2) for each isotope and each spectrum channel to have Z and Z̄. Then, λ and Z̄

are scaled by Z̄ resulting in Xn and Yn as in equation (2.14). The resulting random

noise acting on model (2.14) is Vn. As before, the coefficients β∗12 of the background

and β∗9 of I131 are set to be one, and the coefficient β∗1 for Pu239 is equal to 0.2. All

other β∗i ’s are zero.

The LASSO-AIC and LASSO-BIC are implemented in MATLAB with one

modification. In the application to nuclear material detection, the values of the

unknown β∗i ’s are always non-negative. If the ith isotope is present, the corresponding

β∗i can be small but is positive. If the ith isotope is absent, the corresponding β∗i is

zero but cannot be negative. Thus, in numerical simulations, if β̂i of the LASSO-

AIC or the LASSO-BIC estimate is negative, β̂i is set to zero and the ith isotope is

considered absent.

To quantify the performance of the estimates, I define two types of errors:

False negative: Isotope is present and the algorithm fails to find it.
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False positive: Isotope is absent and the algorithm falsely identifies it.

The simulation consists of 10,000 Monte Carlo runs. Since for each run, I131,

Pu239, and the background are always there and no other isotopes are present, the

column labeled “present” in Table 3.2 shows the total numbers of appearances of each

isotope in 10,000 runs. The last two columns of Table 3.2 show the number of times

each isotope was identified by LASSO-AIC and LASSO-BIC. The corresponding error

rates are shown in Table 3.3.

From the simulation results, it is obvious that both the LASSO-AIC and the

LASSO-BIC are very good in identifying the radioactive sources, but their false posi-

tive rates are concerns. To reduce the false positive errors, it will be helpful to analyze

the performance limitations of the LASSO estimates in the context of this nuclear

material application.

Two questions are particularly interesting and important. First, for a given

measurement data, does there always exist at least one tuning parameter t in equa-

tion (2.18) that provides the correct estimate β̂? By correct, I mean the LASSO

estimates β̂i 6= 0 if β̂∗i 6= 0 and βi = 0 if β∗i for all i. Secondly, if such an optimal

t exists, does AIC or BIC always find the optimal t? Since the analysis is similar, I

focus on AIC here.

The first question was studied in the literature [25], and the answer is no. In

fact, the probability that no such t exists could be very high. To study the second

question, consider a scalar equation

y(k) = β∗ + v(k), k = 1, 2, ..., n (3.6)
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where v(k) = ξ(k) − λ and ξ(k)’s are independently Poisson distributed with mean

and variance λ. In other words, v(k)’s are i.i.d. with zero mean and identical variance

λ. Following the same procedures as in [47], the LASSO estimate of equation (2.18)

for a given t assumes the form of

β̂ = sign(β̂LS)(|β̂LS| −
t

2n
)+

where β̂LS is the least squares estimate of equation (2.17) with Xn = 1, Yn = y(k),

and Vn = v(k).

Two cases need to be calculated to find the optimal t based on AIC and

the corresponding LASSO estimate β̂: (1) |β̂LS| ≤ t/2n or β̂ = 0 and q(t) = 0

as in equation (2.25) which implies ln(s(t)/n) + α(q(t)/n) = ln
∑
y(k)2/n, and (2)

|β̂LS| > t/2n or |β̂| > 0, q(t) = 1 and

min
β

{
ln
∑ (y(k)− β)2

n
+

2

n

}
= ln

∑ (y(k)− β̂LS)2

n
+

2

n
.

Clearly, based on AIC, the LASSO estimate β̂ = 0 if

ln
∑ y(k)2

n
< ln

∑ (y(k)− β̂LS)2

n
+

2

n

and |β̂| > 0 if

ln
∑ y(k)2

n
> ln

∑ (y(k)− β̂LS)2

n
+

2

n
.

Now, suppose the actual β∗ = 0, λ = 10, and n = 1024 in equation (3.6). The

probability that the LASSO estimate based on AIC is not zero is

Pr{|β̂| > 0} = Pr
{

ln
∑ y(k)2

n
> ln

∑ (y(k)− β̂LS)2

n
+

2

n

}
≈ 0.16.
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This demonstrates that even in the case of β∗ = 0 or the nuclear material is absent and

an optimal t > 2n|β̂LS| exists that produces a correct estimate β̂ = 0, AIC gives rise

to a tuning parameter t that results in incorrect estimates |β̂| > 0 with a substantial

probability. This explains why the false positive error of the LASSO method is so

high. The above analysis clearly illustrates the problem of the LASSO, i.e., the

LASSO or similar types of variable selection algorithms including the LARS, the

Forward Stepwise, the Backward Stepwise and other variable selection methods [47]

alone are unable to solve the radionuclide detection problem reliably and accurately.

3.4 Sub-Sampling with LASSO

On one hand, we want to utilize the nice property of the LASSO that produces

very small false negative errors. On the other hand, we need to reduce or eliminate its

large false positive errors. Observe that the problem with the false positive error rate

is that though the ith isotope is absent, the LASSO-AIC or the LASSO-BIC estimate

β̂i is a random variable that could be positive for a particular experiment or a Poisson

realization. Notice that individual classification methods are recently challenged by

combined classification systems which often show better performance. A motivation

for ensembles is that a combination of a decision made by individual classification

produces powerful committee [21]. Based on the idea of majority voting, LASSO can

be combined with an estimation of a tight interval in which the true but unknown

β∗ lies. To this end, the least squares (LS) estimate and the probability distribution

associated with the LS estimate is useful. Although the LS estimate is not good for
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variable selection in general because it usually gives a small non-zero value even if

the true value is zero, its asymptotical distribution does provide a way to estimate

an interval in which the true β∗ lies.

Let the LS estimate β̂LS be defined as in equation (2.17). Its mean value and

variance are given by

E(β̂LS) = β∗

E(β̂LS − β∗)(β̂LS − β∗)T =
σ2

n
(
1

n
XT
nXn)−1 =

σ2

n
(
1

n

n∑
i=1

xix
T
i )−1.

If n→∞, the asymptotic distribution of β̂LS is given by [14] as

√
n(β̂LS − β∗) ∼ N

(
0, σ2( lim

n→∞

1

n

n∑
i=1

xix
T
i )−1

)
,

or for large n, β̂LS is asymptotically Gaussian distributed

∼ N
(
β∗,

σ2

n
(
1

n

n∑
i=1

xix
T
i )−1

)
and each component β̂LSi obeys

∼ N
(
β∗i ,

σ2

n
(
1

n

n∑
i=1

xix
T
i )−1

i,i

)
(3.7)

where ((1/n)
∑n

i=1 xix
T
i )−1 are computable and xii is the iith element of the matrix

Xn.

Let std stand for the standard deviation of the distribution (3.7). By a prop-

erty of the Gaussian distribution, with probability 0.999 or higher, β∗i − 3 · std ≤

β̂LSi ≤ β∗i + 3 · std, or equivalently

β̂LSi − 3 · std ≤ β∗i ≤ β̂LSi + 3 · std.
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Also let ε > 0 be a small positive number. If

β̂LSi + 3 · std < ε

we can say with a high confidence that β∗i ≤ 0 of the ith isotope is absent independent

of the results of LASSO-AIC or LASSO-BIC. This would provide a way to reduce the

false positive rates.

The actual LS distribution is unknown, and only a large enough n ensures (3.7)

is an appropriate approximation. For the application of nuclear material detection, n

is fixed and may not be large. In such a case, the approximation performance cannot

be guaranteed because no error bound is available. A different approach must be

developed that possesses a bound for finite n. A sub-sampling approach may be used

to find the LS distribution Fβ̂LS . Rewrite equation (2.14) as

yi = xTi β
∗ + vi, i = 1, 2, ..., n

and let Ns and m be two positive numbers such that

0 < Ns < n, m = n−Ns + 1

Define

X(i) =

 xTi
...

xTi+Ns−1

 , Y (i) =

 yi
...

yi+Ns−1

 , V (i) =

 vi
...

vi+Ns−1

 , i = 1, 2, ...,m.

Further, let β̂(i)LS be the LS estimate of β∗ based on the data X(i) and Y (i) of length

Ns,

β̂(i)LS =
(
XT (i)X(i)

)−1

XT (i)Y (i)
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= β∗ +
( 1

Ns

i+Ns−1∑
j=i

xix
T
i

)−1( 1

Ns

i+Ns−1∑
j=i

xivi

)
, i = 1, 2, ...,m.

Let Fβ̂Ns (b) = Pr{β̂(i) ≤ b} be the probability distribution function of β̂(i),

where the vector inequality is taken component-wise. The idea is to approximate

Fβ̂LS of β̂ by Fβ̂Ns of β̂(i).

Let

1[β̂(i)≤b] =

{
1, β̂(i) ≤ b

0, β̂(i) > b

be the indicator function, and define the empirical probability function F̂β̂Ns (b) as

F̂β̂Ns (b) =
1

m

m∑
i=1

1[β̂(i)≤b]

Then, the following theorem is in place:

Theorem 3.1 (Sub-Sampling Error Bound). Assume the yi’s are stationary and

(XT (i)X(i))−1 exists for each i. Then,

1. If the vi’s are i.i.d., then for each m,

E
(
F̂β̂Ns (b)− Fβ̂Ns (b)

)2

≤ 12

m

2. If the vi’s are generated by a stable linear filter derived by i.i.d. noise, then

E
(
F̂β̂Ns (b)− Fβ̂Ns (b)

)2

≤ 12
Ns − 1

n−Ns

(
2− Ns

n−Ns

)
+

24

n−Ns

· ρ

1− ρ

for some 0 < ρ < 1.

The proof of Theorem 3.1 can be found in Chapter 8.

Figure 3.6 demonstrates the improvement of the sub-sampling approach over

the asymptotic approximation by showing the actual distribution of β̂LSi and ap-

proximate distributions by asymptotic approximation and sub-sampling. Clearly, the
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distribution by sub-sampling is closer to the actual one than the one by asymptotic

approximation.

Figure 3.6: Actual distribution and approximate distributions by asymptotic and

sub-sampling approaches.

Now, the error bound given by Theorem 3.1 is a non-asymptotic bound which

provides an error quantification for modest n which is more useful than the asymptotic

bound for this application. Notice what really is of interest, however, is the LS

estimate distribution Fβ̂ of β̂ that is the estimate by taking all the data i = 1, 2, ..., n.

On the other hand, Fβ̂Ns is the LS distribution of β̂(i) by taking the data length

Ns < n. Further, Fβ̂Ns is unknown and is approximated by F̂β̂Ns . Intuitively, when
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Ns is close to n, Fβ̂Ns is close to Fβ̂. However, Ns close to n implies m = n−Ns + 1

is small and the error between Fβ̂Ns and its estimate F̂β̂Ns is large. Ns and m have to

be adjusted carefully.

Algorithm 3.1 LASSO with Sub-Sampling Algorithm

1. Given a detector and possible radioactive sources, construct the matrix λ as

in equation (3.4).

2. Observe the number of gamma-ray counts and construct equation (2.14).

3. Apply the LASSO-AIC or the LASSO-BIC as discussed previously. Set β̂i to

zero if β̂i < 0.

4. Set the threshold ε > 0 and m, Ns. Determine the sample distribution Fβ̂Ns

for each β̂i using the sub-sampling technique. Calculate the sample mean

value µ̂i and the sample standard deviation σ̂i from the sample distribution Fβ̂Ns

for each β̂i.

5. For both the LASSO-AIC and the LASSO-BIC, if β̂i > 0 and (µ̂i + 3σ̂i) ≥ ε,

we say the ith isotope is present. Otherwise, the ith isotope is absent.

Now the detection algorithm is in place by combining the LASSO-AIC or

LASSO-BIC with sub-sampling. Table 3.4 shows the results from 10,000 Monte Carlo

simulations of the above detection algorithm with ε = 0.05, m = 44 and Ns = n−m =
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Table 3.2: The numbers of appearances and detections by the LASSO-AIC (LA) and

the LASSO-BIC (LB) for each isotope in 10,000 simulations.

Isotope Present Detected (LA) Detected (LB)
Pu239 10000 10000 10000
Ga67 0 6579 8467
Cs137 0 6728 7911
U235 0 9725 9792
K40 0 5607 6172
Na22 0 6101 7347
Ba133 0 6467 8534
Ce139 0 5791 7340
I131 10000 10000 10000
Co57 0 6113 7734
Co60 0 4054 2768
Background 10000 10000 10000

980 at an SNR of -10 dB, and Table 3.5 shows the results at different SNRs. By

slightly sacrificing excellent false negative rates, the false positive rates have been

drastically reduced from 0.6352 to 0.00078 for the LASSO-AIC and from 0.7341 to

0.00098 for the LASSO-BIC. At the same time the false negative rates remain very

small at 0.0027 for both the LASSO-AIC and LASSO-BIC. Clearly, the combined

algorithm of the LASSO and sub-sampling outperforms both the LASSO-AIC and

the LASSO-BIC significantly.

An interesting question is how the performance of the combined algorithm is com-

pared to that of sub-sampling only. To this end, the false negative and false positive errors of

the sub-sampling algorithm from the same simulation with the same threshold ε are shown

in the last row of Table 3.5. The combined algorithm improves the false negative error of

the sub-sampling algorithm by approximately (0.0002/0.0027=) 7% and the false positive
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Table 3.3: False negative and false positive detection error rates of LASSO-AIC and

LASSO-BIC.

False negative rate False positive rate
LASSO-AIC 0.0000 (0/30000=0) 0.6352 (57165/90000=0.6352)
LASSO-BIC 0.0000 (0/30000=0) 0.7341 (66065/90000=0.7341)

Table 3.4: The numbers of appearances and detections of each isotope by the LASSO-

AIC (LA) and the LASSO-BIC (LB) together with sub-sampling at an SNR of -10 dB.

Isotope Present Detected (LA) Detected (LB)
Pu239 10000 9932 9932
Ga67 0 68 87
Cs137 0 0 0
U235 0 0 0
K40 0 0 0
Na22 0 0 0
Ba133 0 2 2
Ce139 0 0 0
I131 10000 10000 10000
Co57 0 0 0
Co60 0 0 0
Background 10000 10000 10000

Table 3.5: Detection errors of the two stage algorithms and of sub-sampling only at

different SNRs.

False negative rate
Method -15dB -18 dB -20dB -22dB -24dB
LASSO-AIC with sub-sampling 0.0000 0.0000 0.0027 0.0079 0.2170
LASSO-BIC with sub-sampling 0.0000 0.0000 0.0027 0.0079 0.2170
Sub-sampling only 0.0000 0.0000 0.0029 0.0091 0.2690

False positive rate
Method -15dB -18dB -20dB -22dB -24dB
LASSO-AIC with sub-sampling 0.0007 0.0007 0.0008 0.0010 0.0078
LASSO-BIC with sub-sampling 0.0007 0.0009 0.0010 0.0012 0.0078
Sub-sampling only 0.0012 0.0010 0.0011 0.0024 0.0091
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error by approximately (0.00032/0.00078=) 40%. The MATLAB code, PoiLandSub.m, for

these simulations may be found in Section 9.7.
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CHAPTER 4
REMOVING IRRELEVANT VARIABLES AMIDST LASSO

ITERATIONS (RIVAL)

The number of detector channels n is, of course, finite, and as we have seen, this

renders the asymptotical results of popular variable selection methods in Chapter 2 im-

practical. Though these results do provide a theoretical benchmark, it is desirable to have

results that could apply to a large but fixed n. A new algorithm for detection, called

positive RIVAL (removing irrelevant variables amidst LASSO iterations), is presented here

and in [24] and is shown to be especially effective for such an n. The algorithm assumes

that all unknown intensities are non-negative, and thus positive RIVAL is related to the

positive LASSO (2.24). As such, a comprehensive analysis of positive LASSO is performed.

Sufficient and necessary conditions for positive LASSO’s asymptotic convergence are sup-

plied, and an algorithm for solving the positive LASSO is included. Moreover, an adaptive

positive LASSO is proposed and analyzed to have both parameter consistency (2.16) and

set consistency (2.15) as n → ∞. Positive RIVAL’s ability of finding the correct model

is highlighted in examples where it outperforms adaptive (positive) LASSO, non-negative

garrote, and LARS. Because the non-negativity assumption is not crucial to the technical

development of the positive RIVAL algorithm, this assumption is later relaxed so it may

have a broader set of applications, and the more general RIVAL is tested against these same

variable selectors.

Consider the positive LASSO with a weighting vector w = (w1, ..., wp)
T , wj ≥ 0, j =

1, ..., p, applied to the penalty term, i.e.,

J(β) = min
β≥0

{
||Yn −Xnβ||22 + t

p∑
j=1

wjβj

}
. (4.1)
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Positive RIVAL generates a sequence of weights w(k) > 0 and corresponding solutions to

(4.1), β̂(k), and the hope is that 0 < η1 ≤ β̂j(k) ≤ η2 < ∞, j = 1, ...d and β̂j(k) = 0,

j = d + 1, ..., p as k → ∞. That is to say, the estimated set A = A∗ as k → ∞. If n

is allowed to be large, we may use the set generated by positive RIVAL to trim off the

irrelevant regressors from Xn and the corresponding irrelevant variables from β̂ to estimate

the unknown intensities using the ordinary least squares estimate. Note that the iteration of

β̂(k) is with respect to k while the number of data n is held fixed. This is completely different

from the positive LASSO or the adaptive LASSO where only when a new observation is

made or n→ n+ 1, a new β̂ is recalculated. To fully understand positive RIVAL, we first

need a comprehensive analysis of the positive LASSO.

4.1 Positive LASSO Algorithm

The weighted positive LASSO (4.1) can be numerically calculated by modifying the

LARS algorithm discussed in Section 2.3.3. The modified algorithm is very efficient but

sensitive in terms of identifying the correct variables if the regressors are highly correlated,

which is the case in our nuclear material detection problem. The algorithm works by

identifying the regressor with the most correlation with the output. It introduces the

corresponding variable and increases its magnitude only until a new regressor has as much

correlation with the current residual. The algorithm then introduces the second variable,

and so on. If two regressors are highly correlated and the problem is very noisy, the algorithm

may find a wrong regressor in which to proceed, thus giving an incorrect solution path. To

avoid this problem, Algorithm 4.1, a coordinate descent-type of algorithm, is proposed.

Later, this algorithm is compared with the modified LARS algorithm. The MATLAB code

pLasso.m implements Algorithm 4.1 and may be found in Section 9.5.
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Algorithm 4.1 Weighted Positive LASSO Coordinate Descent Algorithm

1. Set k = 0.

2. At each k, let γ(k) = β̂(k) = (β̂1(k), ..., β̂p(k))T . Set l = 1.

2.1. For each l, calculate γl = max(
Cl−

∑
j 6=l qljγj(k)

qll
, 0).

2.2. Let γl(k) = γl. If l < p, set l = l + 1 and go to Step 2.1. If l = p, go

to Step 3.

3. Set β̂(k + 1) = γ(k), k = k + 1 and go to Step 2. (This step may be modified

to add the stopping criterion. For instance, terminate the iteration if

||β̂(k + 1)− β̂(k)||2/||β̂(k)||2 is smaller than a prescribed small number).

Let the initial estimate be β̂(0) ≥ 0, and let

Q = XT
nXn =

q11 · · · q1p
...

. . .
...

qp1 · · · qpp

 ,

CT = (C1, ..., Cp) = Y T
n Xn − 1/2twT .

Then, we can solve (4.1) from Algorithm 4.1. To establish convergence, observe the follow-

ing:

� argminβ≥0

{
||Yn − Xnβ||22 + twTβ

}
=argminβ≥0(β − β̄)TXT

nXn(β − β̄)with β̄ =

(XT
nXn)−1(XT

n Yn− 1
2 tw). Thus, the weighted positive LASSO problem is a quadratic

optimization over a convex set and so the solution is unique if Q = XT
nXn > 0 and

there is no local minimum issue.

� From the level sets {β ≥ 0|(β − β̄)TXT
nXn(β − β̄) = c}, it is clear that if β ≥ 0 is

not the minimizer, there always exists some direction (0, ..., 0, 1, 0, ..., 0)T such that
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for some ρ,

β + ρ(0, ..., 0, 1, 0, ..., 0)T ≥ 0

and

J(β + ρ(0, ..., 0, 1, 0, ..., 0)T ) < J(β)

as illustrated for a 2-dimensional case in Figure 4.1.

� For each l,

J = Y T
n Yn + qllβ

2
l +

∑
i 6=l

qiiβ
2
i +

∑
i 6=j

qijβiβj − 2
∑
i

βiCi

which is in a quadratic form of βl, and J →∞ as βl →∞. Further,

0 =
∂J

∂βl
= 2qllβl + 2

∑
l 6=j

qljβj − 2Cl

implies that if β1, ..., βl−1, βl+1, ..., βp are fixed, the optimal βl ≥ 0 that minimizes J

is given by

βl = max
(Cl −∑j 6=l qljβj

qll
, 0
)
.

� The generated sequence β(k) is bounded and J(β(k+ 1)) < J(β(k)) if β(k) is not the

minimizer.

Now it should be clear that β̂(k) is a convergent sequence and converges to a local

minimum that is also the global minimum. The algorithm performs well even when two

regressors are highly correlated. In the two dimensional case, two highly correlated regres-

sors make the ellipses in Figure 4.1 extremely narrow, and noise jitters their centers. This

has very little effect on changing the optimal point from lying on one axis to the other.

Summarizing these observations, we have:

Theorem 4.1 (Weighted Positive LASSO Algorithm Convergence). Consider the

weighted positive LASSO for given t ≥ 0, w = (w1, ..., wp)
T , wj ≥ 0, j = 1, ..., p, Yn and
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Xn. Assume Q = XT
nXn > 0. Then the sequence β̂(k) generated by the above algorithm

converges to the solution of the weighted positive LASSO.

Figure 4.1: Illustration of Algorithm 4.1 in two dimensions. One complete iteration

includes moving in both dimensions separately.

In a comparison with the popular LARS algorithm, consider a noisy two-dimensional

example with both regressors being highly correlated with one another:

Xn =

(
10 20
10 22

)
, β∗ =

(
2
0

)
.

Let the noise components of Vn be i.i.d. normal with zero mean and variance 225, and t
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is chosen as 0.01 for the coordinate descent algorithm. After 1,000 iterations, the modified

LARS algorithm found the correct set six times, and Algorithm 4.1 found it 369 times. On

three occurrences, LARS identified the correct set and the coordinate descent algorithm

failed. On 366 occurrences, the coordinate descent algorithm found the correct set and

LARS failed. I am not claiming one algorithm to be better than the other. Recall the duty

of the algorithm is to find the estimate which produces the minimum J value in (4.1), and

I have said nothing about this value. It is obvious from this example, however, that the

algorithms differ from each other and can lead to a different index set. Both algorithms

should be considered when solving the weighted positive LASSO.

4.2 Positive LASSO Consistency

The consistency results of [44] for the LASSO can be extended to the weighted

positive LASSO. Partition Xn as

Xn =

(
Xn,11 Xn,12

Xn,21 Xn,22

)
where

Xn,11 ∈ <d×d, Xn,12 ∈ <d×(p−d), Xn,21 ∈ <(n−d)×d,

Xn,22 ∈ <(n−d)×(p−d)

Define Cn as

α2I ≥
1

n
XT
nXn = Cn =

(
cn(1, 1) cn(1, 2)
cTn (1, 2) cn(2, 2)

)
≥ α1I > 0

where the αi’s are independent of n. As before, define the weight vector as

0 ≤ w =

w1
...
wp

 =



w11
...
w1d

w21
...

w2(p−d)


.
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Also define

an = cTn (1, 2)c−1
n (1, 1)

w11
...
w1d

 ∈ <p−d.
Then it can be shown that when n

t → ∞ and t√
n
→ ∞ as n → ∞, a sufficient condition

for the weighted positive LASSO to have set consistency (2.15) and parameter consistency

(2.16) is

anj ≤ w2j − εn, j = 1, ..., p− d (4.2)

and a necessary condition is

anj ≤ w2j +Op(

√
n

t
), j = 1, ..., p− d

where εn > 0 is a positive sequence satisfying

εn → 0, εn/(
t

n
)→∞, εn/(

√
n

t
)→∞

as n→∞. The proof has been omitted due to similarty to that of [44].

On one hand, the weighted positive LASSO is convex and can be solved efficiently,

however whether it can capture the index set A∗ depends on the sufficient condition (4.2).

Notice that the condition depends on the data Xn and the weight w. In general, the

condition is not satisfied. Just as the adaptive LASSO could automatically satisfy the

LASSO condition (2.19), I propose the adaptive positive LASSO, Algorithm 4.2, which will

automatically satisfy condition (4.2) as n→∞.

By a similar argument as in [46] for adaptive LASSO, we arrive at the following

result:

Theorem 4.2 (Adaptive Positive LASSO Convergence). Consider the adaptive pos-

itive LASSO and assume n
t →∞ and t√

n
→∞ as n→∞. Then, in probability as n→∞,

A→ A∗ and β̂ → β∗.
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Algorithm 4.2 Adaptive Positive LASSO Algorithm

1. Given Yn and Xn, calculate the ordinary least squares estimate β̂LS.

2. Set weights wj = 1/|β̂LSj|.

3. Apply the weighted positive LASSO as in (4.1) for the given t, w, Yn and Xn.

Denote the solution as β̂ = (β̂1, ..., β̂d, ...β̂p)
T .

4. With the new data Yn+1, replace Yn and Xn by Yn+1 and Xn+1 respectively, and

set n→ n+ 1. Go to Step 1.

4.3 Positive RIVAL for Detection

In the previous sections, a method for solving the weighted positive LASSO problem

was demonstrated and the (adaptive) positive LASSO asymptotic convergence results were

supplied. Now consider the weighted positive LASSO for a given t, n, Yn, and Xn. Assume

1
nX

T
nXn > 0. Let 0 ≤ q(k) ≤ 1 be a positive sequence satisfying

∑∞
k=1 q(k) = ∞. Now,

Algorithm 4.3 describes the positive RIVAL method and Theorem 4.3 justifies its use. The

positive RIVAL MATLAB code for a fixed regularization parameter MAdPosiLasso.m is

available in Section 9.4.

Theorem 4.3 (Positive RIVAL Convergence). Consider the positive RIVAL algorithm.

Define a = n
t , d̂ = (d̂1, ..., d̂p) = 2V Tn Xn√

n

√
n
t , cj = d̂j/ξj , and bj = β∗j +

d̂j
2aξj

. Assume n/t,

t→∞ as n→∞. Further assume Xn is orthogonal, i.e., 1
nX

T
nXn =


ξ1 0 · · · 0
0 ξ2 · · · 0
...

...
. . .

...
0 0 · · · ξp

 >

0. Then, there is an integer n0 > 0. For any n ≥ n0, there exists an integer k0 > 0 such
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that when the non-zero conditions

bj > δj =
bj −

√
b2j − 2/a

2
> 0, 1 ≤ 2abj −

1

bj − δj
(4.3)

j = 1, ..., d

and the zero condition

a ≥ (cj + δ)2

8
for any δ > 0, j = d+ 1, ..., p (4.4)

are satisfied, the sequence β̂(k) generated by positive RIVAL satisfies

0 < η1 ≤ β̂1(k), ..., β̂d(k) ≤ η2 <∞, ∀k ≥ k0

β̂d+1(k) = β̂d+2(k) = ... = β̂p(k) = 0, ∀k ≥ k0

or equivalently

A(k) = A∗ ∀k ≥ k0

where A(k) is the estimated index set at stage k.

The proof of Theorem 4.3 may be found in Chapter 8.

For the positive RIVAL algorithm, the increasing rate of t as n gets larger is specified

which guarantees the set consistency asymptotically. For our nuclear material application,

however, n is fixed and how to choose an optimal t becomes an issue. Conceptually, positive

RIVAL will generate a correct sequence of weights that identifies and eliminates irrelevant

variables and the corresponding regression vectors at each iteration but requires a properly

chosen t for fixed n. Too small t would not be useful for identification of irrelevant predictors

and too greedy t would likely incorrectly identify variables. To this end, the optimal topt can

be determined by AIC or BIC as discussed in Section 2.3.5., but with a twist. The analysis
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is similar for both AIC and BIC, so just BIC is analyzed here. To emphasize the dependence

of A on t, write A as A(t) and β̂ALS as β̂A(t)LS . The subscript ALS indicates that the least

squares estimate β̂ALS is dependent on A as a result of positive RIVAL. Further, let q(t) be

the number of non-zero components of β̂A(t)LS and XA(t)n denote Xn after the irrelevant

regressors are removed according to A(t). The optimal topt, according to BIC, is

topt = argmin
t

{
n ln
||Yn −XA(t)nβ̂A(t)LS ||22

n
+ ln(n)q(t)

}
.

The idea is that with a number of candidate t’s, the weighted positive LASSO can be solved

for each t, and positive RIVAL generates the corresponding subset of regressors. Trim off the

irrelevant regressors from Xn and corresponding β̂j ’s from the estimate. Then, the ordinary

least squares estimate is computed and used to determine the estimate’s BIC value. The

candidate t which minimizes the BIC value is the optimal t.

Figure 4.2 illustrates the difference in using a selection operator’s estimate (e.g.

positive LASSO estimate) to directly calculate BIC versus the method of using the positive

RIVAL-generated set to trim off irrelevant regressors and using the dimensionally-reduced

ordinary least squares estimate to calculate BIC. In both cases, the t that minimizes the

curves is the optimal t. From Figure 4.2, there exists only one such t for the positive LASSO

scenario, however, any t ∈ [121, 131] for the RIVAL scenario can be chosen, as these t’s

produce the same minimal BIC value. The reason is because the model dimension of the

RIVAL-generated set is not changing over this range. Though the estimate’s parameters are

changing magnitudes, this information is not used, as it is the parameters of the reduced

ordinary least squares that ultimately decides the BIC value. This gives the RIVAL BIC plot

its rectangular shape, where the discontinuities occur when the model dimension changes

(as is also the case with the positive LASSO BIC discontinuities).
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Algorithm 4.3 Positive RIVAL Algorithm

1. Let w̄(1) = (w̄1(1), ..., w̄p(1))T = (1, ..., 1)T , wj(1) = ξjw̄j(1), j = 1, ..., p

and set k = 1, where ξj is the norm of the jth column of the matrix 1
n
XT
nXn.

2. Apply the weighted positive LASSO as in (4.1) and denote

β̂(k) = (β̂1(k), β̂2(k), ..., β̂p(k))T the solution of the weighted positive LASSO

with respect to the weight vector w(k).

3. If β̂j(k) = 0, set β̂j(k + i) = 0 for all i ≥ 0. Remove β̂j and wj from β̂

and w respectively,

β̂1
...

β̂j−1

β̂j
β̂j+1

...

β̂p


→



β̂1
...

β̂j−1

β̂j+1
...

β̂p


,



w1
...

wj−1

wj
wj+1

...
wp


→



w1
...

wj−1

wj+1
...
wp


Also remove the corresponding jth column from Xn so the dimension of the

optimization is reduced by one. If β̂j(k) > 0, let

w̄j(k + 1) = q(k) · 1

β̂j(k)
+ (1− q(k))w̄j(k), wj(k + 1) = ξjw̄j(k + 1).

Repeat this processes for all j = 1, ..., p.

4. Set k = k + 1 and go back to Step 2. The dimension could be reduced

if some of β̂j = 0 at Step 3. (This step may be modified to add the stopping

criterion using the standard one in numerical analysis, e.g., the iterations stop

if ||β̂(k + 1)− β̂(k)||2/||β̂(k)||2 is smaller than the prescribed threshold).



www.manaraa.com

80

Figure 4.2: The discrete nature of a BIC plot generated with positive RIVAL (top)

is due to the two-stage BIC calculation of using positive RIVAL to identify the ac-

tive set of regressors and then using a dimensionally-reduced ordinary least squares

estimate. The BIC plot generated with positive LASSO (bottom) will not have this

characteristic because the positive LASSO estimates are used directly in the BIC

calculation.

I would like to make a few comments regarding the positive RIVAL algorithm:

� Conceptually, the weights wj(k)’s generated by positive RIVAL corresponding to the

non-zero coefficients β∗j , j = 1, ..., d are uniformly bounded for all k and the weights

wj(k)’s corresponding to zero coefficients β∗j , j = d+1, ..., p grow monotonically until

the corresponding estimate β̂j = 0.
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� The initial estimate β̂(1) is generated by the uniform weights wj(1) = 1, j = 1, ..., p.

To increase the algorithm’s speed, the inverse of the least squares could be used

wj(1) = 1/|β̂LSj | if n is large.

� At least in theory, positive RIVAL has the perfect ability to find the index set if

1
nX

T
nXn > 0 is diagonal and n is large enough to satisfy the non-zero conditions (4.3)

and the zero condition (4.4). Simulations suggest that the results also hold for a much

larger class including when matrix XT
nXn is diagonally dominate.

� If A = A∗ we can apply the ordinary least squares β̂ALS = (β̂ALS1, ..., β̂ALSd)
T to

estimate (β∗1 , ..., β
∗
d)T by trimming off zero coefficients β̂j = 0, j = d+ 1, ..., p and the

corresponding regression vectors. If n is allowed to be large, the convergence of β̂ALS

to (β∗1 , ..., β
∗
d)T and of A to A∗ is guaranteed by the properties of the least squares

estimate.

Positive RIVAL is similar to non-negative garrote and adaptive LASSO in the sense

that weights are adjusted based on a convergent sequence of estimates. All three have

asymptotical set consistency with proper choices of the regularization parameter. However,

for a fixed and finite n, the performances are different. Because of the self-adjusting ability

for a fixed n which neither adaptive LASSO nor non-negative garrote possesses, positive

RIVAL seems to work better. Though it is hard to quantify the improvement theoretically,

a large number of simulations seem to suggest a significant improvement. I provide two

examples here.

Example 1:

Yn =

(
10 20
10 22

)(
10
0

)
+ Vn, Vn ∼ N (0,

√
5

2 · I)
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Table 4.1: Correctly identified rates for finding the correct index set when n is small

and the regressors are highly correlated (Example 1) and orthogonal (Example 2).

LARS Non-negative garrote Adaptive LASSO Positive RIVAL
Example 1 0.0004 0.0360 0.0020 0.9930
Example 2 - 0.0000 0.0413 0.9994

Example 2:

Yn =

(
10 −30
10 30

)(
10
0

)
+ Vn, Vn ∼ N (0, 152 · I)

Both are two dimensional for a small n = 2. This makes achieving set consistency a

tough task. In Example 1, the two regressors are highly correlated, and in Example 2, the

two are orthogonal.

To guarantee asymptotic consistency, the regularization parameters were chosen ac-

cording to their theoretically specified values. Adaptive LASSO’s regularization parameter

t = n1/3 = 21/3 according to [46], and non-negative garrote’s parameter t = 3
√

log(n)/n =

3
√

log(2)/2 according to [43]. In accordance with Theorem 4.3, positive RIVAL’s param-

eter was chosen as t = n1/3 = 21/3. For Example 1, 10,000 simulations were carried out

for positive RIVAL, adaptive LASSO, non-negative garrote, and LASSO implemented by

LARS. The top portion of Table 4.1 shows the correctly identified rates (CIRs) for the four

methods for finding the correct index set. The CIR is defined as 1−(false positive rate +

false negative rate).

Adaptive LASSO only found the correct index set 20 times out of 10,000 tries. Non-

negative garrote also performed poorly, as it found the correct index set only 360 times.

The reason for the poor performance in each case is the same: n = 2 is just too small

for weight by a converging sequence of estimates to take effect. On the other hand, since
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positive RIVAL has an adjusting ability for a fixed n, it performed very well by identifying

the correct index set 9,930 times in 10,000 tries. LARS did not fare well as expected because

the two regressors are highly correlated. Thus, LARS finds a wrong regressor to start with.

Figure 4.3 shows a typical path of LASSO solutions for Example 1 generated by LARS.

The LARS algorithm chooses the second regressor to start with, when in fact the second

regressor does not contribute to the output.

Figure 4.3: The LASSO solution path as found by the LARS algorithm often will

not contain the correct model when two regressors are highly correlated. The correct

model β̂1 6= 0 and β̂2 = 0 cannot be selected for any value of t.

In a sense it is not fair to compare LARS with the other three methods because

the other three methods have an advantage of adjusting weights based on a convergent

sequence of estimates for each n, e.g., by the least squares estimate. LARS does not have
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this advantage. However, it is fair to compare positive RIVAL with adaptive LASSO and

non-negative garrote. To this end, Example 2 is used to test how the three methods perform

when the regressors are orthogonal. 10,000 more simulations were run with the same choices

of regularization parameters. The bottom portion of Table 4.1 shows the results. Again,

non-negative garrote and adaptive LASSO did not perform well because of a small n, but

positive RIVAL worked almost perfectly. This demonstrates the utility of positive RIVAL:

it achieves set consistency for a smaller number of data than is required by its competitors.

Now, consider the nuclear material problem presented in Section 3.2. Recall the true

β∗ = α·(0.2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)T and the signal to noise ratio defined in equation (3.5).

Also recall the 11 isotopes involved in testing found in Table 3.1. For this problem, n = 1024

is large but fixed, so positive RIVAL should be applied. The average error rates of 500

simulations with q(k) ≡ 1 are shown in Table 4.2. For comparison, the results of the

adaptive LASSO and non-negative garrote are provided with two different choices of t. One

choice is according to the asymptotic value for convergence when n → ∞, and the other,

whose results are shown in parentheses, is based on AIC/BIC for the fixed n = 1024. The

results of standard LASSO using AIC and BIC are shown in Table 3.3 for an SNR of -10

dB. Clearly, positive RIVAL outperforms traditional methods such as LASSO and peak

detection algorithms, whose detection performances were presented in Section 3.2.

4.4 RIVAL without Positivity

Somewhat unrelated to nuclear material detection, this section gives the perfor-

mance results of positive RIVAL when the unknown parameters are allowed to be negative.

Relaxing the positivity constraint allows the modified algorithm, called RIVAL, to be use-

ful in more general applications. I directly compare RIVAL to popular variable selectors
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Table 4.2: False positive and false negative rates of the positive RIVAL algorithm

(AIC and BIC), and error rates for adaptive LASSO and the non-negative garrote with

regularization parameters chosen according to theoretical values and by AIC/BIC (in

parentheses).

Method SNR (dB) False positive rate False negative rate

Positive RIVAL

-10 0.0000 0.0000
-20 0.0005 0.0013
-30 0.0010 0.0015
-32 0.0017 0.0065

Adaptive LASSO
-10 0.0624 (0.0164) 0.0000 (0.0000)
-20 0.0771 (0.0482) 0.1387 (0.1353)

Non-negative garrote
-10 0.0000 (0.0803) 0.6667 (0.0000)
-20 0.0000 (0.0649) 0.6667 (0.1360)

using well known simulated examples presented in other papers. Further, I abandon the

use of AIC and BIC to select model dimensions in favor of cross validation as to conform

to these papers. The results suggest that indeed RIVAL can be applied confidently in

situations where the scientist or statistician cannot guarantee unknown parameters to be

non-negative.

Just as positive RIVAL uses the weighted positive LASSO, RIVAL makes use of the

weighted LASSO (2.21). The convergence results of the weighted LASSO can be established

by generalizing the irrepresentable condition for weighted positive LASSO (4.2) to

|anj | ≤ w2j − εn, j = 1, ..., p− d.

This condition we’ve seen before; it is the condition (2.19) that motivated the creation of

the adaptive LASSO.

The RIVAL algorithm is the same as positive RIVAL only with a few modifications.
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Instead of solving the weighted positive LASSO, solve the weighted LASSO (2.21). Also,

use |β̂j(k)| to update the weights. Algorithm 5.3 summarizes the RIVAL method.

Algorithm 4.4 RIVAL Algorithm

1. Same as positive RIVAL Step 1.

2. Same as positive RIVAL Step 2, but solve the weighted LASSO (2.21) instead

of the positive LASSO.

3. Same as positive RIVAL Step 3, but update the weights as

w̄j(k + 1) = q(k) · 1

|β̂j(k)| + (1− q(k))w̄j(k), wj(k + 1) = ξjw̄j(k + 1).

4. Same as positive RIVAL Step 4.

The use of RIVAL is justified by the following result:

Theorem 4.4 (RIVAL Convergence). Consider the RIVAL algorithm. Define a = n
t ,

d̂ = (d̂1, ..., d̂p) = 2V Tn Xn√
n

√
n
t , cj = d̂j/ξj , and bj = β∗j +

d̂j
2aξj

. Assume n/t, t→∞ as n→∞.

Further assume Xn is orthogonal, i.e., 1
nX

T
nXn =


ξ1 0 · · · 0
0 ξ2 · · · 0
...

...
. . .

...
0 0 · · · ξp

 > 0. Then, there is

an integer n0 > 0. For any n ≥ n0, there exists an integer k0 > 0 such that when the

non-zero conditions

bj > δj =
|bj | −

√
b2j − 2/a

2
> 0, 1 ≤ 2a|bj | −

1

|bj | − δj
(4.5)

j = 1, ..., d
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and the zero condition

a ≥ (cj + δ)2

8
for any δ > 0, j = d+ 1, ..., p (4.6)

are satisfied, the sequence β̂(k) generated by RIVAL satisfies

0 < η1 ≤ |β̂1(k)|, ..., |β̂d(k)| ≤ η2 <∞, ∀k ≥ k0

β̂d+1(k) = β̂d+2(k) = ... = β̂p(k) = 0, ∀k ≥ k0

or equivalently

A(k) = A∗ ∀k ≥ k0

where A(k) is the estimated index set at stage k.

This result is similar to that of Theorem 4.3 and so the proof has been omitted.

RIVAL works just like positive RIVAL, though it should be expected to require

a larger n for convergence than positive RIVAL since the positivity constraint has been

relaxed. The performance of the algorithm can be illustrated in a few examples from

the literature. In [38], the author provides three examples to test the performance of

his LASSO method. These examples were also used in [46] to test the adaptive LASSO

against the original LASSO. I shall begin with these three examples and compare the

performances of general RIVAL to those of LASSO, adaptive LASSO, and non-negative

garrote in the context of variable selection. The MATLAB code rival.m in Section 9.6 is

the implementation of Algorithm 5.3 for a fixed regularization parameter.

For Example 1, Yn = Xnβ
∗+Vn, β

∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)T . The noise components

are i.i.d. normal with zero mean and standard deviation σ. Xn = (X1n ... X8n) and the

correlation between Xin and Xjn is ρ|i−j| with ρ = 0.5. For testing, n = 20, 60, 100 and
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Table 4.3: Correctly identified rates of RIVAL, LASSO, adaptive LASSO and non-

negative garrote for Example 1.

LASSO Adaptive LASSO RIVAL Non-negative garrote

n = 20
σ = 1 0.470 0.485 0.850 0.695
σ = 2 0.300 0.320 0.410 0.285

n = 60
σ = 1 0.740 0.770 0.910 0.880
σ = 2 0.750 0.760 0.785 0.700

n = 100
σ = 1 0.830 0.835 0.930 0.895
σ = 2 0.800 0.780 0.835 0.770

Table 4.4: Correctly identified rates of RIVAL, LASSO, adaptive LASSO and non-

negative garrote for Example 2.

LASSO Adaptive LASSO RIVAL Non-negative garrote

n = 20
σ = 1 0.400 0.445 0.930 0.460
σ = 2 0.020 0.040 0.475 0.235

n = 60
σ = 1 0.990 0.990 0.995 0.975
σ = 2 0.460 0.445 0.880 0.655

n = 100
σ = 1 1.000 1.000 1.000 1.000
σ = 2 0.760 0.795 0.925 0.873

standard deviations of 1 and 2 were considered for each n. 200 simulations were run for

each combination of n and σ with 5-fold cross validation to choose the model. The average

correct identification rates are shown in Table 4.3. From the results, we see the utility of

RIVAL in action: RIVAL requires a smaller n than its competitors. When n = 20, RIVAL

is nearly 0.15 better than the second best competitor. It is only when n becomes larger do

the other methods start relatively improving. But even when n = 100, RIVAL performs

the best. From the table, it is obvious that RIVAL is the preferred method for Example 1.

Example 2 is the same as Example 1, but with β∗j = 0.85, j = 1, ..., 8. RIVAL really
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Table 4.5: Correctly identified rates of RIVAL, LASSO, adaptive LASSO and non-

negative garrote for Example 3.

LASSO Adaptive LASSO RIVAL Non-negative garrote

n = 20
σ = 1 0.875 0.890 0.940 0.855
σ = 2 0.886 0.875 0.810 0.815

n = 60
σ = 1 0.984 0.988 0.965 0.915
σ = 2 0.980 0.980 0.865 0.875

n = 100
σ = 1 0.988 0.992 0.975 0.930
σ = 2 0.990 0.992 0.905 0.890

does well here; it outperforms its competitors in every scenario, as shown in Table 4.4.

RIVAL is especially good again when n = 20.

Example 3 is the same as Example 2, however β∗ = (5, 0, 0, 0, 0, 0, 0, 0)T . RIVAL

performs well again, but so do the others. Notice from Table 4.5 that RIVAL’s best relative

performance comes again when n = 20.

The next example, Example 4,

Yn = Xnβ
∗ + Vn, Xn = (X1n X2n X3n), β∗ = (1, 1, 0)T , Vn ∼ N (0, I),

is supplied from a paper which analyzes the solution path of the non-negative garrote [43].

The claim is that the non-negative garrote is path consistent, i.e., the probability that its

solution path contains the correct model approaches 1 as n→∞. The paper compares the

frequency of correct paths produced by non-negative garrote to that of LASSO. Recall that a

correct path is one that contains the correct model. This is an interesting example, because,

unlike the previous three, this example does not attempt to pick the correct model. Thus,

blame for any errors falls solely on the variable selection method and not on the preferred

method for estimating the model dimension, e.g., AIC, BIC, or cross validation. I use the
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data from this paper and compare it with RIVAL’s performance.

Figure 4.4: Frequency of generating correct paths for RIVAL, non-negative garrote,

and LASSO in Example 4. For α = 0.55, LASSO is inconsistent and non-negative

garrote begins to falter. For α = 0.65, RIVAL clearly outperforms LASSO and non-

negative garrote.
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The two active regressors X1n and X2n were independently simulated from a stan-

dard normal distribution. X3n was generated from a normal distribution with mean α(X1n+

X2n) and variance 1 − 2α2. Four different α’s were considered: 0.35, 0.45, 0.55, 0.65. For

each α, 20 equally spaced sample sizes were considered: 25, 50, ..., 500. For each scenario,

100 data sets were simulated, and the rates of generating a correct path were recorded. In

this example, a correct path is one in which β̂1 6= 0, β̂2 6= 0 and β̂3 = 0.

For α = 0.35, all three methods were consistent, though RIVAL performed better

than LASSO at small sample sizes. When α = 0.45, RIVAL and non-negative garrote were

consistent. LASSO does in fact approach a frequency of 1, however it is not monotonically

increasing. The performances of the three methods for α = 0.55 and α = 0.65 are shown

in Figure 4.4. When α = 0.55, both RIVAL and non-negative garrote performed well, but

LASSO is inconsistent. Finally, when α = 0.65, LASSO remains inconsistent and RIVAL

clearly outperforms non-negative garrote.
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CHAPTER 5
SHIELDING

When a material is placed between a source of radiation and the detector, thus

decreasing the gamma-ray intensity reaching the detector, that material is said to be a

shield. Shielding nuclear materials can be an effective method for deceiving a detector,

hence a useful detection algorithm should be able to perform adequately under modest

shielding conditions. It is well known from physics that shielding materials such as lead,

concrete, carbon and water attenuate lower energy radiation more so than radiation of higher

energy, and thereby change the characteristic shapes of the isotope spectra in Figure 3.1.

To manage this problem, it will be convenient to express each isotope’s spectrum as a

superposition of its characteristic peaks - its sub-spectra. The introduction of sub-spectra

requires new selection algorithms since it is counterproductive for an algorithm to select

between sub-spectra of the same group (isotope). As it happens, the RIVAL algorithm can

be modified to incorporate variables with a group structure [23].

To demonstrate the need for the selection of grouped variables, consider an example

from the literature [13] with n = 200 observations and p = 100 predictors, in blocks of

ten. The number of non-zero coefficients in the first six blocks are 10, 8, 6, 4, 2 and 1

respectively, with coefficients equal to ±1, the sign chosen at random. The next four blocks

are all zero. The regressors are standard normal with correlation of 0.2 within a group and

zero otherwise. Finally, Gaussian noise with zero mean and variance 42 is added to each

observation.

The average number of misclassifications by RIVAL in 500 simulations is shown in

Figure 5.1 for a grid of regularization parameters. From the figure, it appears that RIVAL
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can do no better than twelve misclassifications on average. Figure 5.2 shows the performance

in one simulation with a regularization parameter of t = 1.4. There are errors in all but two

groups. In fact, RIVAL classifies two of the four irrelevant groups as non-zero. The reason

for the large number of errors is that each parameter has its own weight and this encourages

sparsity at the individual parameter level. If a group structure is known a priori, then this

information should be incorporated into the algorithm to encourage sparsity at the group

level.

Figure 5.1: Results for the group example showing the number of variables misclas-

sified by RIVAL changes with the regularization parameter.
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Figure 5.2: Result of one simulation of the group example for t = 1.4. The actual

coefficients are shown as X’s and the signs of the estimated coefficients are shown with

filled in circles. The seventh and the ninth groups are the only ones to be classified

completely correctly.

5.1 Modeling Shielded Intensitites

If the spectrum of the jth isotope has Kj characteristic peaks, or sub-spectra, it

may be expressed as a superposition of the Kj sub-spectra. In this case, the spectrum of

the jth radioactive source is a matrix

Xj =


x11 x12 · · · x1Kj

x21 x22 · · · x2Kj
...

...
. . .

...
xn1 xn2 · · · xnKj

 .

Each column of Xj gives the mean gamma-ray counts per unit source material and per

unit time of each sub-spectrum comprising the jth isotope. Now, each sub-spectrum is
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considered mono-energetic and the attenuation by a shield is assumed constant over the

entire sub-spectra. I131 has Kj = 5 energy peaks with a branching ratio larger than 0.005,

and thus its spectrum can be decomposed into five sub-spectra, with five column vectors

comprising Xj . The decomposition of I131 is illustrated in Figure 5.3 and the decomposition

of Pu239 into its Kj = 10 sub-spectra is shown in Figure 5.4. Branching ratio is defined

as the fraction of particles which undergo a certain type of decay with respect to the total

number of particles that decay.

Figure 5.3: The decomposition of I131 into its five sub-spectra with branching ratios

larger than 0.005.
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Figure 5.4: The decomposition of Pu239 into its ten sub-spectra with branching ratios

larger than 0.005.

Define

Xn = (X1X2 · · ·Xp), β
0 =


β0

1

β0
2
...
β0
p


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where the vector β0
j ∈ RKj is the unshielded relative intensities of the sub-spectra from the

jth isotope. All of the components of β0
j are equal due to the fact that each sub-spectra

in group j has the same parent isotope. Further, let the received gamma-ray counts at the

channel i be Y (i). Then,

Y =

p∑
j=1

Xjβ
0
j + V,

or equivalently, Y (1)
...

Y (n)

 = Xβ0 + V

where, as before, V is a random vector describing the difference between the actual received

gamma-ray counts and its statistical average, and it can be assumed that V is Gaussian

with zero mean. However, since the variance at each channel is different, each component

of V does not have the same variance. The effect of non-homogeneous variance at different

channels may be reduced by normalizing the model by Ȳ

Ȳ

Y (1)
...

Y (n)


︸ ︷︷ ︸

Yn

= Ȳ X︸︷︷︸
Xn

β0 + Ȳ V︸︷︷︸
Vn

, Ȳ =


1√
Y (1)

· · · 0

...
. . .

...
0 · · · 1√

Y (n)

 .

Now, if Xjn = Ȳ Xj , we have

Yn =

p∑
j=1

Xjnβ
0
j + Vn,

or simply

Yn = Xnβ
0 + Vn.

Define l as the product of the shielding material’s density and its thickness. This product

l is called the mass thickness and has units of grams per square centimeter. The amount

of attenuation caused by a shielding material of mass thickness l at energy level i is an
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exponential function [29], e−µil, where µi, having units of square centimeters per gram, is

the mass attenuation coefficient at the ith energy level that depends on the type of shielding

material. The mass attenuation coefficients are well known for various shielding materials

[29] and depend on the energy of the incoming gamma-rays, as shown in Figure 5.5 for lead.

For a given shielding material and mass thickness l, define the attenuation matrix

D =


D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dp

 , Dj =


e−µj,1l 0 · · · 0

0 e−µj,2l · · · 0
...

...
. . .

...

0 0 · · · e
−µj,Kj l

 , (5.1)

where µj,i is the attenuation coefficient at the energy level corresponding to the i sub-spectra

peak of the jth isotope. For example, if j is the index corresponding to I131, values of µj,i

for lead, i = 1, ..., 5 can be read off of Figure 5.5 for the five sub-spectra of I131. In this

case µj,1 = 1.86, µj,2 = 0.367, µj,3 = 0.231, µj,4 = 0.106, and µj,5 = 0.093 (all in units of

cm2/g). Then, the intensities after the shield has been applied are

β∗ =


β∗1
β∗2
...
β∗p

 = Dβ0, β∗j = (β∗j1, β
∗
j2, ..., β

∗
jKj )

T ,

where the Kj components of vector β∗j are the shielded intensities of the sub-spectra from

the jth isotope. Now the system is modeled as

Yn =

p∑
j=1

Xjnβ
∗
j + Vn, (5.2)

or

Yn = Xnβ
∗ + Vn. (5.3)

In the analysis that follows, it is assumed that the normalized spectrum is given

by (5.2), or equivalently, (5.3), with the components of Vn being i.i.d. of zero mean and

constant variance. The validity of this assumption is demonstrated in Section 5.3 where
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nuclear materials are simulated as Poisson random variables, but detection is based on the

Gaussian model (5.3).

Figure 5.5: The mass attenuations coefficients for lead plotted against energy. The

labeled points are those applying to I131 and its five sub-spectra.

5.2 Group Positive LASSO Consistency

The system (5.3) is assumed to be sparse, that is to say that some of the unknown

groups of coefficients β∗j are exactly zero, corresponding to isotopes that are absent. Further,

for the application of nuclear material detection, the non-zero coefficients must be positive

when the material is present.

Suppose there are an unknown number 0 < d < p of non-zero groups corresponding

to the d isotopes which are present. Without loss of generality, we may re-arrange indices
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such that

β∗ =



β∗1
β∗2
...
β∗d
0
...
0


, ||β∗1 ||2 > 0, ..., ||β∗d ||2 > 0, (5.4)

||β∗d+1||2 = ... = ||β∗p ||2 = 0.

Now, consider the true but unknown index set to be

A∗ = {j : ||β∗j ||2 > 0}. (5.5)

The problem of nuclear material detection is again one of variable selection: identify

the index set A∗ and remove those irrelevant groups of regressors as well as the corresponding

isotopes, thus identifying which materials are present and which are absent. It would be

nice to be able to use positive RIVAL for this problem, but recall that at the heart of the

positive RIVAL algorithm is the positive LASSO, and both LASSO and positive LASSO

encourage selection among individual parameters instead of grouped parameters [42], and

thus, for this application, the positive RIVAL method leaves more to be desired. To combat

this problem, I introduce the group positive LASSO.

Let an estimate of β∗ be

β̂ =


β̂1

β̂2
...

β̂p

 , β̂j = (β̂j1, β̂j2, ..., β̂jKj )
T , j = 1, 2, ..., p

then the group positive LASSO estimate is the β that solves

min
β≥0

{
||Yn −Xnβ||22 + t

p∑
j=1

wj

Kj∑
i=1

βji

}
(5.6)

where β ≥ 0 is taken component-wise, t ≥ 0 is a regularization parameter, and w =

(w1, w2, ..., wp)
T is a non-negative weighting vector. Group positive LASSO encourages
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grouping by applying the same weight wj to each parameter in the jth group. The role of

t is to balance the two terms in (5.6): a t = 0 produces the least squares estimate, and a

very large lambda forces every group estimate to zero.

For a given Yn, Xn and w = (w1, w2, ..., wp)
T , one can efficiently solve the group

positive LASSO (5.6) in a similar fashion to the method for solving the adaptive LASSO

[46]. Algorithm 5.1 describes the method in detail. Indeed, this algorithm solves the group

positive LASSO for all t. The optimal regularization parameter topt can be determined by

cross-validation or AIC/BIC.

Algorithm 5.1 Group Positive LASSO Algorithm

1. Define X∗∗jn = Xjn/wj, j = 1, ..., p.

2. Modify the popular LARS [9] algorithm to incorporate the positive LASSO.

Use it to solve the positive LASSO problem for all t,

β̂∗∗ =


β̂∗∗1
β̂∗∗2
...

β̂∗∗p

 = arg min
{
||Yn −

∑p
j=1X

∗∗
jnβj||22 + t

∑p
j=1

∑Kj
i=1 βji

}
, β ≥ 0

3. The group positive LASSO solution for the jth group is β̂∗∗j /wj, j = 1, ..., p.

For a given data set Yn and Xn, define the estimated set A to be the estimate of A∗

in (5.5). To establish the consistency of group positive LASSO, recall that for a variable

selector to be consistent, it should have the properties (2.15) and (2.16), namely, those

groups of parameters which have non-zero norms are correctly identified, and the estimates
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of the unknown parameters grow closer to the true values as more data is available.

Let z be the total number of components in β∗ across all non-zero groups, i.e.,

z =
∑d

j=1Kj , and let m be the length of vector β∗, i.e., m =
∑p

j=1Kj . Partition the

regressor matrix Xn as

Xn =

(
Xn,11 Xn,12

Xn,21 Xn,22

)
where

Xn,11 ∈ <z×z, Xn,12 ∈ <z×(m−z), Xn,21 ∈ <(n−z)×z, Xn,22 ∈ <(n−z)×(m−z).

Define Cn and assume

α2I ≥
1

n
XT
nXn = Cn =

(
cn(1, 1) cn(1, 2)
cn(2, 1) cn(2, 2)

)
≥ α1I > 0

where the αi’s are independent of n. Also define

W T
1 = (W11,W12, ...,W1d),

W1j = wj · (1, ..., 1)︸ ︷︷ ︸
Kj

, j = 1, ...d

so that the length of W1 is z, and similarly define

W T
2 = (W21,W22, ...,W2(p−d)),

W2j = wd+j · (1, ..., 1)︸ ︷︷ ︸
Kd+j

, j = 1, ...p− d

so that the length of W2 is m− z. Let

an = cTn (1, 2)c−1
n (1, 1)W1 ∈ <m−z

then, in an analysis similar to that of [44] for LASSO, it can be shown that when n
t → ∞

and t√
n
→ ∞ as n → ∞, a sufficient condition for the group positive LASSO to have set
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consistency (2.15) and parameter consistency (2.16) is

anj ≤ (0, ..., 0, 1︸︷︷︸
jth

, 0, ..., 0)W2 − εn, j = 1, ...,m− z (5.7)

and a necessary condition is

anj ≤ (0, ..., 0, 1︸︷︷︸
jth

, 0, ..., 0)W2 +Op(

√
n

t
), j = 1, ...,m− z (5.8)

where εn > 0 is a positive sequence satisfying

εn → 0, εn/
( t
n

)
→∞, εn/

(√n
t

)
→∞

as n→∞.

It would be convenient to be able to modify the group positive LASSO to guarantee

that condition (5.7) is satisfied and the correct set A∗ identified, at least for when n is

large. In fact, the condition is automatically satisfied when the weights wj ’s, j = 1, ..., d are

small and the weights wj ’s, j = d+ 1, ..., p are large. Of course, d is unknown, but, as was

the case with adaptive positive LASSO, the idea of data-dependent weights may be used.

Properly choosing the relationship between the wj ’s and the βj ’s will give small weights for

those groups whose estimates are non-zero and give large weights for those groups whose

estimates are close to zero. Thus, it is natural to propose the adaptive group positive

LASSO as described in Algorithm 5.2.

By a similar argument as in [46] for adaptive LASSO, the following theorem is in

place:

Theorem 5.1 (Adaptive Group Positive LASSO Convergence). Consider the adap-

tive group positive LASSO and assume n
t → ∞ and t√

n
→ ∞ as n → ∞. Then, in

probability as n→∞, A→ A∗ and β̂ → β∗.
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Algorithm 5.2 Adaptive Group Positive LASSO Algorithm

1. Given Yn and Xn, calculate the ordinary least squares estimate

β̂LS = (β̂TLS1, β̂
T
LS2, ..., β̂

T
LSp)

T , where β̂TLSj = (β̂LSj1, β̂LSj2, ..., β̂LSjKj).

2. Set weights wj = 1/||β̂LSj||1, j = 1, ..., p, where || · ||1 is the 1-norm.

3. Apply the group positive LASSO as in (5.6) for the given w, Yn, and Xn.

Denote the solution corresponding to t as β̂ = (β̂T1 , β̂
T
2 , ..., β̂

T
p )T .

4. Only when a new measurement is taken and new data is gathered, replace Yn

and Xn by Yn+1 and Xn+1, respectively, and set n→ n+ 1. Go to Step 1.

5.3 Group Positive RIVAL for Detection

As was the case with adaptive positive LASSO, the asymptotic convergence results

of group adaptive positive LASSO are not extremely useful for detecting nuclear materials

because the number of detector channels is finite. With a large but fixed n, it should

be possible to, by a properly chosen sequence of weights w(k)’s, generate a corresponding

sequence of group positive LASSO solutions β̂(k) = (β̂T1 (k), β̂T2 (k), ..., β̂Tp (k))T where 0 <

η1 ≤ ||β̂j(k)||2 ≤ η2 <∞, j = 1, ..., d and ||β̂j(k)||2 = 0, j = d+ 1, ..., p as k →∞.

Positive RIVAL, as presented in Chapter 4, may be modified to encourage grouping,

and the resulting algorithm is named group positive RIVAL. Consider the group positive

LASSO as described in (5.6) for given n, Yn, andXn. Assume 1
nX

T
nXn > 0. Let 0 ≤ q(k) ≤ 1

be a sequence satisfying
∑∞

k=1 q(k) = ∞. Then, group positive RIVAL is described by

Algorithm 5.3.

The following theorem justifies the use of group positive RIVAL:
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Theorem 5.2 (Group Positive RIVAL Convergence). Consider the group positive RI-

VAL algorithm. Assume n
t →∞, t→∞ as n→∞ and Xn is block diagonal, i.e.,

1

n
XT
nXn =


H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hp

 , Hj = ξjI ∈ <Kj×Kj , ξj > 0

and I is the identity matrix. Then, there is an integer n0 > 0. For any n ≥ n0, there exists

an integer k0 > 0 such that the sequence β̂j(k) generated by group positive RIVAL satisfies

0 < η1 ≤ ||β̂j(k)||2 ≤ η2 <∞, ∀k ≥ k0, j = 1, ..., d

||β̂j(k)||2 = 0, ∀k ≥ k0, j = d+ 1, ..., p

or equivalently,

A(k) = A∗ ∀k ≥ k0

where A(k) is the estimated index set at stage k.

The proof of Theorem 5.2 may be found in Chapter 8.

The sequence of weights wj(k)’s generated by group positive RIVAL determines

which groups of parameters, if any, are forced to zero and which remain non-zero. Applying

the same weight wj to all the estimates in the jth group encourages the selection of groups, as

the weights wj(k)’s corresponding to the non-zero groups ||β∗j || 6= 0 are uniformly bounded

for all k and the weights wj(k)’s corresponding to zero groups of coefficients β∗j , j = d +

1, ..., p grow monotonically without bound until the corresponding group estimate ||β̂j ||2 =

0. One could choose to initialize the weighting vector as wj(1) = 1/||β̂LSj ||1 instead of

setting wj(k) = 1, j = 1, ..., p to potentially increase the algorithm’s speed, but only

when n is large enough to ensure a reliable least squares estimate. In such a case, and

if group positive RIVAL can capture the correct index set A∗, one can estimate β∗ =
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(β∗T1 , ..., β∗Td )T by applying a dimensionally-reduced ordinary least squares estimate β̂ALS =

(β̂TALS1, ..., β̂
T
ALSd)

T by trimming off the zero groups ||β̂j ||2 = 0, j = d+ 1, ..., p. Recall the

subscript A indicates that the estimate β̂ALS is A dependent and a result of group positive

RIVAL. Then, the convergence of the estimates to their true values is guaranteed by the

properties of the least squares estimate.

If 1
nX

T
nXn > 0 is diagonal with equal diagonal elements within a group and n is

large enough, group positive RIVAL, in theory, has the perfect ability to find the correct

index set. The use of group positive RIVAL, however, should not be limited to just this

case; simulations show the algorithm may be applied successfully to a much larger class of

Xn, as will be demonstrated in our nuclear material application where 1
nX

T
nXn > 0 is not

diagonal and n = 1024. In fact, the utility of group positive RIVAL is easily demonstrated

for a fixed and finite n, when the unique, self-adjusting ability of the algorithm is made

apparent. Not to be outdone, group positive RIVAL has asymptotical set consistency with

proper choices of t as n gets larger, and this is a result of the algorithm adjusting weights

based on a convergent sequence of estimates. Note that the choice of q(k) is not a critical

one; a q(k) close to 1 increases the speed of the algorithm, whereas a q(k) close to 0 decreases

sensitivity to noise.

Consider the nuclear detection experiment described in Section 3.2, i.e., a germa-

nium type of detector with n = 1024 channels and a background consisting of radiation

from local sources and cosmic rays. The 10 isotopes considered are listed in Table 5.1,

along with their sub-spectra energy levels. An isotope’s sub-spectrum is considered only if

its branching ratio is larger than 0.005. The coefficients of the background and of I131’s

sub-spectra are set to 1, and the coefficients of Pu239’s sub-spectra are set to 0.2. All
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other nuclear materials are absent and their group coefficients are set to 0. For such an

experiment, the true unshielded parameter vector has the group form

β0 =

(
0, ..., 0︸ ︷︷ ︸
K1=7

, 0︸︷︷︸
K2=1

, 0, 0︸︷︷︸
K3=2

, 0, ..., 0︸ ︷︷ ︸
K4=4

, 0, ..., 0︸ ︷︷ ︸
K5=4

, 0, ..., 0︸ ︷︷ ︸
K6=6

, 1, ..., 1︸ ︷︷ ︸
K7=5

, 0︸︷︷︸
K8=1

, 0, 0︸︷︷︸
K9=2

, 0.2, ..., 0.2︸ ︷︷ ︸
K10=10

, 1
)T

so that the dimension of the problem is m = 43. The signal to noise ratio is calculated in

a way similar to (3.5), but across all energy channels of all sub-spectra, i.e.,

SNR(α) = 10 log
α
(∑1024

i=1 (
∑10

s=1 0.2Pu239s(i) +
∑5

s=1 I131s(i))
)

∑1024
i=1 Background(i)

. (5.9)

I consider α = 1, 10, 20 corresponding to unshielded SNRs of about −11,−0.9, 2 dB, though

a shield will of course lower the SNR. Values of µj,i in (5.1) for carbon, concrete, lead,

and water for the energy levels in Table 5.1 are retrieved from [29]. Mass thicknesses of

l = 10, 20, 30 g/cm2 are considered, as well as l = 0, corresponding to the absence of a

shield. After shielding, the true parameter vector is

β∗ = Dβ0 =
(
0T , 0T , 0T , 0T , 0T , 0T , β∗T7 , 0T , 0T , β∗T10 , 1

)T
, (5.10)

where

β∗7 = 1 ·
(
e−µ7,1l, e−µ7,2l, e−µ7,3l, e−µ7,4l, e−µ7,5l

)T
and

β∗10 = 0.2 · (e−µ10,1l, e−µ10,2l, e−µ10,3l, e−µ10,4l, e−µ10,5l,

e−µ10,6l, e−µ10,7l, e−µ10,8l, e−µ10,9l, e−µ10,10l)T .

Notice that the background is left unshielded. The dimension of the zero vectors in (5.10)

should be obvious from context. The SNR after the application of a shielding material with

mass attenuation coefficients µ and a mass thickness l is

SNR(α) = 10 log
α
(∑1024

i=1 (
∑10

s=1 0.2e−µ10,slPu239s(i) +
∑5

s=1 e
−µ7,slI131s(i))

)
∑1024

i=1 Background(i)
. (5.11)
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Table 5.1: The isotopes and corresponding sub-spectra energies involved in a shielding

experiment.

Isotope Sub-spectra energy peaks considered (keV)
Ba133 53.15, 79.6, 81, 276.4, 302.85, 356, 383.8
Ce139 165.86
Co57 122.06, 136.47
Co60 346.9, 1170, 1330, 2500
Cs137 31.8, 37.3, 283.5, 661.657
Ga67 91.27, 93.3, 184.58, 208.95, 300.22, 393.5
I131 80.185, 284.31, 364.489, 636.99, 722.911
K40 1460.83
Na22 511, 1274.53
Pu239 81.229, 84.214, 89.95, 109.16, 143.8, 163.3, 185.7, 194.9, 202.1, 205.3
Background N/A

Though group positive RIVAL encourages grouping, it is certainly possible for the

algorithm to find some sub-spectra and not others belonging to the same parent isotope.

That is to say, for a given j, group positive RIVAL may produce a group estimate such that

β̂ji = 0 and β̂jk 6= 0 for some i and k. It is clear that, with the addition of sub-spectra, some

ambiguity exists in interpreting the results as present or absent. For this experiment, an

isotope is considered present if just one of its sub-spectra is detected. As before, false positive

error rate, false negative error rate, and correctly identified rate quantifies the algorithm’s

performance, and the optimal regularization parameter, topt, is chosen by AIC/BIC.

1000 simulations were run without shielding for several SNRs, and the average of

the performances is illustrated in Figure 5.6. The algorithm works well for an SNR as

low as -24 dB, but does not perform as well as in the non-group case, which performed

well at -32 dB. The reason is because Xn becomes ill-conditioned as more sub-spectra are

considered. Sub-spectra whose branching ratios are larger than 0.005 are included in Xn;
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Algorithm 5.3 Group Positive RIVAL Algorithm

1. Let w(1) = (w1(1), ..., wp(1))T = (1, ..., 1)T . Set k = 1.

2. Apply the group positive LASSO with respect to the weight vector w(k) and

denote the solution corresponding to t as β̂(k) = (β̂T1 (k), β̂T2 (k), ..., β̂Tp (k))T ,

where β̂Tj (k) = (β̂j1, β̂j2, ..., β̂jKj).

3. For any j such that ||β̂j(k)||2 = 0, set β̂j(k + κ) = 0 for all κ ≥ 0. Remove β̂j

and wj from β and w, respectively,

β̂1
...

β̂j−1

β̂j
β̂j+1

...

β̂p


→



β̂1
...

β̂j−1

β̂j+1
...

β̂p


,



w1
...

wj−1

wj
wj+1

...
wp


→



w1
...

wj−1

wj+1
...
wp


.

Also remove the corresponding group of regressors Xjn from Xn so the

dimension of the optimization is reduced by Kj. If ||β̂j(k)||2 > 0, update the

corresponding weights as

wj(k + 1) = q(k) · 1∑Kj
i=1 β̂ji(k)

+ (1− q(k))
wj(k)

ξj
,

where ξj is the average of the norms of each column of 1
n
XT
jnXjn.

4. Set k = k + 1 and go back to Step 2. The dimension could be reduced

if some of β̂j = 0 at Step 3. (This step may be modified to add the stopping

criterion using the standard one in numerical analysis, e.g., the iterations stop

if ||β̂(k + 1)− β̂(k)||2/||β̂(k)||2 is smaller than the prescribed threshold).
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this number could be raised to improve performance and omit certain sub-spectra, but in

reality, shielding always exists, and hence, it is important to consider a reasonable amount

of sub-spectra. Thus, the absence of a shield is purely a theoretical situation and is only

considered to provide a best case scenario for comparison purposes.

Figure 5.6: Group positive RIVAL performance versus various SNRs for the un-

shielded case.

Simulations were run with different combinations of shielding materials, thicknesses,

and nuclear material strengths. The simulations were carried out using the MATLAB code

master.m (see Section 9.1) which calls applyShield.m (see Section 9.2) to apply a shield to

the nuclear materials as according to the above analysis. For each combination of shield

parameters, 100 simulations were run, and the average of the results are shown in Table 5.2.

The algorithm works well for carbon, concrete, and water shielding materials. However, the
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Table 5.2: Group positive RIVAL performance under various shielding schemes: FPR

= false positive rate, FNR = false negative rate, and CIR = correctly identified rate.

α Shield material l (g/cm2) Thickness (cm) SNR (dB) FPR FNR CIR

20

Carbon

10 3.82 -3.108 0.0000 0.0000 1.0000
20 7.63 -8.057 0.0000 0.0000 1.0000
30 11.5 -12.81 0.0000 0.0000 1.0000

Concrete

10 4.35 -3.491 0.0000 0.0000 1.0000
20 8.70 -8.601 0.0000 0.0000 1.0000
30 13.0 -13.42 0.0000 0.0000 1.0000

Lead

10 0.882 -11.06 0.0000 0.3333 0.6667
20 1.76 -19.71 0.0000 0.3333 0.6667
30 2.65 -26.69 0.0000 0.3333 0.6667

Water

10 10.0 -3.709 0.0000 0.0000 1.0000
20 20.0 -9.179 0.0000 0.0000 1.0000
30 30.0 -14.40 0.0000 0.0000 1.0000

10

Carbon

10 3.82 -6.118 0.0000 0.0000 1.0000
20 7.63 -11.07 0.0000 0.0000 1.0000
30 11.5 -15.82 0.0000 0.0000 1.0000

Concrete

10 4.35 -6.501 0.0000 0.0000 1.0000
20 8.70 -11.61 0.0000 0.0000 1.0000
30 13.0 -16.43 0.0000 0.0000 1.0000

Lead

10 0.882 -14.07 0.0000 0.3333 0.6667
20 1.76 -22.72 0.0000 0.3333 0.6667
30 2.65 -29.70 0.0000 0.3333 0.6667

Water

10 10.0 -6.719 0.0000 0.0000 1.0000
20 20.0 -12.19 0.0000 0.0000 1.0000
30 30.0 -17.41 0.0000 0.0000 1.0000

1

Carbon

10 3.82 -16.12 0.0000 0.0000 1.0000
20 7.63 -21.07 0.0000 0.0000 1.0000
30 11.5 -25.82 0.0000 0.3333 0.6667

Concrete

10 4.35 -16.50 0.0000 0.0000 1.0000
20 8.70 -21.61 0.0013 0.0100 0.9887
30 13.0 -26.43 0.0000 0.3333 0.6667

Lead

10 0.882 -24.07 0.0000 0.3333 0.6667
20 1.76 -32.72 0.0000 0.6667 0.3333
30 2.65 -39.70 0.0000 0.6667 0.3333

Water

10 10.0 -16.72 0.0000 0.0000 1.0000
20 20.0 -22.19 0.0000 0.0633 0.9367
30 30.0 -27.41 0.0000 0.3333 0.6667
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algorithm struggles to find the materials under lead shielding for an SNR as high as -11 dB.

I took a closer look at lead by simulating with a finer grid of smaller mass thicknesses; this

time with l = 1, 2, 3, 4, 4.25, 4.5, 4.75, 5 and 5.25 g/cm2 for an intermediate signal strength

of α = 10. As shown in Figure 5.7, there is a steep drop off of performance at l = 5 g/cm2

most likely due to lead’s large density.

Figure 5.7: Correctly identified rates of group positive RIVAL for lead shielding of

various mass thicknesses.
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CHAPTER 6
DETECTION WITH AN INEXACT LIBRARY

Until this point, it has been assumed that the library Xn is known perfectly; that

is, the template of isotope spectra and sub-spectra is exact. In some respects, this is

true; branching ratios are known to at least 99.99% accuracy, and it is not uncommon

for a detector to have its own library to account for specific detector characteristics [10].

However, in the less than perfect world, there exist errors caused by so-called detector drift,

and these errors can be modeled as an uncertainty in Xn. Detectors require high voltages

to operate, and so electronics get hot, and the net result is an inaccurate energy reading.

For instance, a 1.33 MeV photon may be reported as 1.30 MeV or 1.40 MeV. Yet another

possible source of library error is from fluctuations in background radiation.

Consider the non-group case, and call the uncertainty in the library ∆Xn, with

unknown regressors ∆xj . Then the detection model (2.14) becomes

Yn = (Xn + ∆Xn)β∗ + Vn,

or equivalently

Yn =

p∑
j=1

(xj + ∆xj)β
∗
j + Vn.

Rearrange indices and partition ∆Xn = (∆Xn1 ∆Xn2), where ∆Xn1 = (∆x1 ... ∆xd)

and ∆Xn2 = (∆xp−d ... ∆xp). For large enough n and a fixed ∆Xn, the irrepresentable

condition for positive LASSO (4.2), using a binomial expansion, (approximately) becomes

anj ≤ w2j − εn, j = 1, ..., p− d (6.1)
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where

an = cTn (1, 2)
[
cn(1, 1) +

∆Xn1∆Xn2

n

]−1

w11
...
w1d

 ∈ <p−d,
and Cn and εn are as defined as before.

Condition (6.1) is not extremely useful, as ∆Xn may or may not be fixed and is

unknown, hence a new method is needed. For unknown ∆Xn, total least squares (TLS) ([15],

[19], [45]) is a least squares data modeling technique that takes both the errors ∆Xn and Vn

into account. In one dimension, TLS works to minimize the perpendicular distance between

the model and the data points, while ordinary least squares minimizes the distance parallel

to the y-axis, as illustrated in Figure 6.1. Note that the TLS distance is perpendicular only

when x and y have equal variances.

Specifically, the TLS estimate is the triple (β̂, Êr, ê) that solves

min
β,Er,e

||[Er, e]||2F (6.2)

s.t. Yn + e = (Xn + Er)β,

where [Er, e] represents matrix Er augmented with vector e, and || · ||F is the Frobenius

norm [16]. Much like ordinary least squares, the TLS estimate generally gives all non-zero

elements and thus will need to be regularized for variable selection applications like nuclear

material detection.

6.1 Regularized Total Least Squares

Consider the TLS minimization problem (6.2) with a positive LASSO-type regular-

ization, i.e.,

min
β≥0,Er,e

{
||[Er, e]||2F + t

p∑
j=1

wjβj

}
(6.3)

s.t. Yn + e = (Xn + Er)β.
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Figure 6.1: TLS accounts for errors in the independent variable as well as the depen-

dent variable by minimizing the perpendicular distance between the model and the

data (left). This is different than ordinary least squares which only accounts for error

in the dependent variable (right).

It should be expected that the model produced by (6.3), with a properly chosen regular-

ization parameter t, is sparse and less sensitive to library noise than positive LASSO. The

regularized TLS problem (6.3) is non-convex, and so no efficient convex solver can guarantee

to achieve the global minimum. Notice that e follows a fixed relationship with Er and β,

so finding the optimum triple (β̂, Êr, ê) is equivalent to finding the optimum pair (β̂, Êr).

Also notice that for a given Er, problem (6.3) reduces to the positive LASSO problem –

a convex problem that can be solved efficiently with Algorithm 4.1 or by modifying Algo-

rithm 2.2. Further, when β is fixed, problem (6.3) is convex in Er. This type of problem

is called a biconvex problem [17], and, though no convergence results can be guaranteed,

it can be solved using an alternating convex search algorithm [45]. Categorized as such,
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Algorithm 6.1 is specific to solving the regularized TLS problem.

Algorithm 6.1 Total Least Squares with Positive LASSO Algorithm

1. Let Êr(k) and β̂(k) denote the estimates of ∆Xn and β∗, respectively, at iteration

k. Initialize the algorithm with Êr(1) = 0n×p. Set k = 1.

2. For the given Êr(k), Xn, Yn, w and t, use a convex solver, e.g., Algorithm 4.1, to

solve the positive LASSO problem

β̂(k) = argminβ≥0

{
||Yn − [Xn + Êr(k)]β||22 + t

∑p
j=1wjβj

}
.

3. Update Êr according to Êr(k + 1) = [Yn −Xnβ̂(k)]β̂T (k)[I + β̂(k)β̂T (k)]−1.

4. If the stopping criteria is met, stop. If not, set k = k + 1, and go back to Step 2.

Similarly, TLS may be combined with positive RIVAL, for which Algorithm 6.2

provides a description.

I would like to make a few comments regarding Algorithms 6.1 and 6.2:

� The update Êr(k+1) in Step 3 is from substituting the constraint Yn+e = (Xn+Er)β̂

back into the cost function for given

hatbeta, and setting the first-order derivative of the cost function with respect to Er

to zero.

� One full iteration includes updating β̂ while holding Er fixed, and updating Er while

holding β fixed. Both updates either maintain or improve, but do not worsen, the

cost function in (6.3). Thus, the monotonic convergence of the bounded, non-negative
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Algorithm 6.2 Total Least Squares with Positive RIVAL Algorithm

1. Let Êr(k) and β̂(k) denote the estimates of ∆Xn and β∗, respectively, at iteration

k. Initialize the algorithm with Êr(1) = 0n×p. Set k = 1.

2. Let X∗∗n (k) = Xn + Êr(k). Replace Xn with X∗∗n (k) in Algorithm 4.3, and use it to

find the positive RIVAL estimate β̂(k).

3. Update Êr according to Êr(k + 1) = [Yn −Xnβ̂(k)]β̂T (k)[I + β̂(k)β̂T (k)]−1.

4. If the stopping criteria is met, stop. If not, set k = k + 1, and go back to Step 2.

cost function is established.

� The convergence of β and Er to their true values β∗ and ∆Xn, respectively, is not

guaranteed, and will most likely depend on the initialization of Er. Setting Er(1) =

0n×p is a good choice in that the first iteration gives the positive LASSO solution.

� The stopping criterion may be one common to numerical analysis, e.g., stop the

iteration if ||β̂(k + 1)− β̂(k)||2/||β̂(k)||2 is smaller than a prescribed threshold.

6.2 Positive RIVAL with TLS for Detection

With uncertainty in the library, it is expected that the combination of positive

RIVAL and total least squares will perform better than positive RIVAL alone. To test this,

uncertainty is added to the library, and Algorithms 6.2 and 4.3 are applied to the usual

scenario, i.e., the isotopes in Table 3.1 are considered, and I131 and Pu239, along with the

background, are present. Pu239 has a strength one-fifth that of I131 and the background.

Two methods to model the uncertainty in the library are considered. The first is a case
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where the uncertainty of each library component is an independent random variable whose

variance is related to the corresponding unperturbed library component. The second case

has a more structured uncertainty; the uncertainty is such that the perturbed library is a

compressed version of the unperturbed one. The latter case arises due to the aforementioned

detector drift, while the former case is meant as a catch-all.

For the first case, recall from Section 3.1 that the library Xn with components xij

is the mean gamma-ray counts per unit time and per unit source material that has been

scaled by detector measurements to reduce the effect of inhomogeneous noise variance. The

scaled uncertainty in the spectrum of the jth isotope is modeled as

∆xij ∼ N(0, γ · xij), i = 1, ..., n

The parameter γ ≥ 0 represents the fractional change in the scaled library. Then, the

unscaled uncertainty ∆x̃ij follows

∆x̃ij ∼ N(0, γ · x̃ij ·
√
zi), i = 1, ..., n

where x̃ij is the unscaled mean gamma-ray counts at the ith channel of the jth isotope, and

zi is from the detector measurements. Thus, the perturbed spectrum of the jth isotope is

a random vector that follows

x̃ij + ∆x̃ij ∼ N(x̃ij , γ · x̃ij ·
√
zi), i = 1, ..., n.

The unperturbed spectrum of Pu239 and three realizations of its perturbed spectrum with

a fractional change γ = 0.10 are shown in Figure 6.2. The noise is more prominent when the

counts are smaller because the figure is plotted on a semi-log scale. A small disturbance is

easily observed when the counts are around 102, but this same disturbance is not observable

when counts are high, i.e., 104 and above.
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Figure 6.2: The first of two methods of modeling the uncertainty in Xn illustrated on

the spectrum of Pu239 for an error of 10%. Each point on the perturbed spectrum is

an independent random variable with a mean equal to the unperturbed spectrum at

that point.

For the second case, γ ≥ 0 is the factor in which the spectrum gets compressed

along the energy (horizontal) axis. In generating the perturbed spectra, the compressed

energy channels are rounded to the nearest integer value. Then, the compressed spectra

are scaled so that each spectrum has the same total energy as its unperturbed counterpart.

The unperturbed spectrum of Pu239 and its perturbed spectrum with a 10% compression

are shown in Figure 6.3.

1000 simulations were run with α = 10 in (3.5) so that the SNR is about −7 dB. The
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SNR is still as defined as before, i.e., it is not a function of the library uncertainty. For each

simulation, and using the MATLAB code TLSlassoNuclear2.m available in Section 9.8, both

positive RIVAL (Algorithm 4.3) and TLS with positive RIVAL (Algorithm 6.2) are executed

over a grid of regularization parameters t, and the optimal t is chosen by minimizing BIC.

Recall that positive RIVAL does not have parameter convergence, but one can use the set

A generated by positive RIVAL to trim off the irrelevant regressors and then perform a

least squares estimate. The set A is, of course, a function of the regularization parameter t,

and so in the analysis to come, let XA(t)n, ÊrA(t), and β̂A(t)LS be the reduced Xn, Êr, and

ordinary least squares estimate, respectively, based on the set found by positive RIVAL.

Algorithm 6.2 has the added benefit of estimating the library uncertainty which can be used

in calculating the BIC value. More precisely, the algorithm estimates the library uncertainty

∆Xn as Êr and generates the model estimate β̂ based on the regressor matrix Xn + Êr.

Therefore, the BIC value is calculated as

BIC(t) = n · ln
||Yn − (XA(t)n + ÊrA(t))β̂A(t)LS ||22

n
+ ln(n) · q(t).

The optimal t according to BIC is then

topt = argmin
t

{
n · ln

||Yn − (XA(t)n + ÊrA(t))β̂A(t)LS ||22
n

+ ln(n) · q(t)
}
.

To measure the performance, use the old metrics of false positive (FPR), false neg-

ative (FNR), and correctly identified (CIR) rates, and define a new metric:

Frequency of Correct Model (FoCM): The algorithm finds all the isotopes that are present

and none which are absent.
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Table 6.1: The performance of total least squares with positive RIVAL as compared

to that of positive RIVAL alone for different library uncertainties modeled as in case

1.

γI γB Method FPR FNR CIR FoCM

0.01

0.05
Positive RIVAL 0.0024 0.0030 0.9946 0.9830
TLS + Positive RIVAL 0.0010 0.0023 0.9967 0.9910

0.10
Positive RIVAL 0.0084 0.0023 0.9893 0.9330
TLS + Positive RIVAL 0.0045 0.0033 0.9922 0.9630

0.20
Positive RIVAL 0.0207 0.0030 0.9763 0.8380
TLS + Positive RIVAL 0.0087 0.0037 0.9876 0.9270

0.30
Positive RIVAL 0.0260 0.0010 0.9730 0.8050
TLS + Positive RIVAL 0.0099 0.0030 0.9871 0.9190

0.05

0.10
Positive RIVAL 0.0201 0.0040 0.9759 0.8320
TLS + Positive RIVAL 0.0082 0.0050 0.9868 0.9330

0.20
Positive RIVAL 0.0320 0.0030 0.9635 0.7630
TLS + Positive RIVAL 0.0120 0.0050 0.9830 0.9020

0.30
Positive RIVAL 0.0368 0.0033 0.9599 0.7240
TLS + Positive RIVAL 0.0177 0.0050 0.9773 0.8600

0.10
0.20

Positive RIVAL 0.0493 0.0040 0.9467 0.6350
TLS + Positive RIVAL 0.0176 0.0070 0.9754 0.8590

0.30
Positive RIVAL 0.0417 0.0023 0.9560 0.6870
TLS + Positive RIVAL 0.0184 0.0080 0.9736 0.8520

0.15
0.20

Positive RIVAL 0.0524 0.0030 0.9446 0.6070
TLS + Positive RIVAL 0.0206 0.0070 0.9724 0.8340

0.30
Positive RIVAL 0.0546 0.0037 0.9417 0.6080
TLS + Positive RIVAL 0.0209 0.0083 0.9708 0.8400

Table 6.2: For the second noise model, the number of data n decreases as a result of

compressing the spectra.

γ = 0.01 γ = 0.03 γ = 0.05 γ = 0.10
n ∗ (1− γ) 1013.76 993.28 972.8 921.6
n after truncating 1014 993 973 922
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Figure 6.3: The second of two methods of modeling the uncertainty in Xn illustrated

on the spectrum of Pu239 for an error of 10%. The perturbed spectrum is a com-

pressed version of the original spectrum. Such an error is a characteristic of detector

drift.

CIR and FoCM provide different ways or measuring the correctness of the estimated

model. To illustrate this, consider a simple example where the true β∗ = (1, 0, 1, 0)T and

A∗ = {1, 3}. Suppose the estimate is β̂ = (0.9, 0.1, 0.9, 0)T and A = {1, 2, 3}. Then, the

FPR is 1/2 = 0.50, the FNR is 0/2 = 0, and the CIR is 1 − (FPR + FNR) = 0.50. The

FoCM in this case is zero because the estimated set A does not match the true set A∗.

Table 6.1 shows the average performance results of both algorithms for different

fractional uncertainties γ when the uncertainty is modeled as in the first case. For such a

case, one might expect more uncertainty in the background part of the library than that in

the isotope part. To distinguish between the two uncertainties, a subscript has been added
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to γ: The isotope uncertainty is γI and the background uncertainty is γB. For the harshest

condition simulated, γI = 0.15 and γB = 0.30, TLS with positive RIVAL finds the correct

model almost 25% more often that positive RIVAL alone.

For the second noise model, one would expect the error in the background part of

the library to be the same as the error in the isotope part. After all, the noise model is

meant to mimic detector drift, and detector drift is due to non-ideal electronics inside the

detector hardware that should produce the same error regardless of the source of radiation.

Therefore, simulations were only considered for γI = γB = γ. Further, since compressing

the spectra has the effect of leaving the high energy-ends undefined, each spectrum was

truncated after the last defined energy bin, leaving the number of data n < 1024 as shown

in Table 6.2.

The number of detections of each isotope in 1,000 simulations of the second noise

model are shown in Table 6.3. Careful inspection of Table 6.3 reveals the unique character-

istic that, for a given γ, the same model was selected for every run of each group of 1,000

simulations. This can easily be explained in the following way. At -7 dB, the SNR was

set relatively high in order to isolate the effect that the library uncertainty has on Algo-

rithms 4.3 and 6.2. Recall from Chapter 4 that positive RIVAL would otherwise perform

flawlessly at this SNR. For each group of 1,000 simulations, γ is fixed, and the library is

not a random variable as it was in the first case. Therefore, for a given γ, the algorithms

will always find the same model. The FoCM will therefore either be 0 or 1, depending on

γ, as shown in Table 6.4.

Both methods perform perfectly when γ = 0.01, 0.03. When γ = 0.05, it is clear

that detection benefits from the addition of TLS to the positive RIVAL algorithm because
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Table 6.3: The number of isotope detections by positive RIVAL and TLS + positive

RIVAL in 1,000 simulations for different library uncertainties modeled as case 2.

γ Isotope Present Positive RIVAL TLS + Positive RIVAL

0.03

Pu239 1000 1000 1000
Ga67 0 0 0
Cs137 0 0 0
U235 0 0 0
K40 0 0 0
Na22 0 0 0
Ba133 0 0 0
Ce139 0 0 0
I1317 1000 1000 1000
Co57 0 0 0
Co60 0 0 0
Background 1000 1000 1000

0.05

Pu239 1000 0 1000
Ga67 0 0 0
Cs137 0 0 0
U235 0 1000 0
K40 0 0 0
Na22 0 0 0
Ba133 0 1000 0
Ce139 0 0 0
I1317 1000 1000 1000
Co57 0 0 0
Co60 0 0 0
Background 1000 1000 1000

0.10

Pu239 1000 0 1000
Ga67 0 1000 0
Cs137 0 1000 1000
U235 0 1000 0
K40 0 0 1000
Na22 0 0 0
Ba133 0 0 0
Ce139 0 0 0
I1317 1000 1000 1000
Co57 0 0 0
Co60 0 0 0
Background 1000 1000 1000
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Table 6.4: The performance of total least squares with positive RIVAL as compared

to that of positive RIVAL alone for different library uncertainties modeled as in case

2.

γ Method FPR FNR CIR FoCM

0.01
Positive RIVAL 0.0000 0.0000 1.0000 1.0000
TLS + Positive RIVAL 0.0000 0.0000 1.0000 1.0000

0.03
Positive RIVAL 0.0000 0.0000 1.0000 1.0000
TLS + Positive RIVAL 0.0000 0.0000 1.0000 1.0000

0.05
Positive RIVAL 0.2222 0.3333 0.4444 0.0000
TLS + Positive RIVAL 0.0000 0.0000 1.0000 1.0000

0.10
Positive RIVAL 0.3333 0.3333 0.3333 0.0000
TLS + Positive RIVAL 0.2222 0.0000 0.7778 0.0000

positive RIVAL alone fails to find the correct model, while TLS with positive RIVAL is

successful. All is not lost when γ = 0.10. Though TLS with positive RIVAL has a FoCM

of zero, the algorithm did, in fact, generate correct paths for the simulations; AIC and BIC

failed to select the correct model. This is more than what can be said for positive RIVAL,

which never generated correct paths. Perhaps cross validation or some other method could

prove to be useful in selecting a model from a path generated by TLS with positive RIVAL,

but there is no hope for paths generated by positive RIVAL.

The total least squares method can also be used in conjunction with group positive

LASSO and group positive RIVAL. If the jth isotope has Kj sub-spectra, j = 1, ..., p, i.e.,

an estimate of β∗ is

β̂ =

β̂1
...

β̂p

 , β̂j = (β̂j1, ..., β̂jKj )
T , j = 1, ..., p



www.manaraa.com

126

Algorithm 6.3 Total Least Squares with Group Positive LASSO Algorithm

1. Let Êr(k) and β̂(k) denote the estimates of ∆Xn and β∗, respectively, at iteration

k. Initialize the algorithm with Êr(1) = 0n×p. Set k = 1.

2. For the given Êr(k), Xn, Yn, w and t, use a convex solver, e.g., Algorithm 5.1, to

solve the group positive LASSO problem

β̂(k) = argminβ≥0

{
||Yn − [Xn + Êr(k)]β||22 + t

∑p
j=1wj

∑Kj
i=1 βji

}
.

3. Update Êr according to Êr(k + 1) = [Yn −Xnβ̂(k)]β̂T (k)[I + β̂(k)β̂T (k)]−1.

4. If the stopping criteria is met, stop. If not, set k = k + 1, and go back to Step 2.

then total least squares with a group positive LASSO-type penalty is the minimization

min
β≥0,Er,e

{
||Er, e||2F + t

p∑
j=1

wj

Kj∑
i=1

βji

}
(6.4)

s.t. Yn + e = (Xn + Er)β.

Notice that problem (6.4) is once again a biconvex minimization and may be solved with

an alternating convex search algorithm. Algorithm 6.3 provides the details for solving TLS

with group positive LASSO. Further, Algorithm 6.4 describes TLS with group positive

RIVAL.

To test Algorithm 6.4, 100 simulations were run with an SNR of -15 dB as in (5.9).

All other simulation details were the same as the non-group simulations, including the two

cases in which library uncertainty was added to the model. Algorithms 5.3 and 6.4 were

implemented with the MATLAB code TLSMaster.m in Section 9.9, and the results for case

1 are shown in Table 6.5. The total least squares method works better in every scenario,
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Algorithm 6.4 Total Least Squares with Group Positive RIVAL Algorithm

1. Let Êr(k) and β̂(k) denote the estimates of ∆Xn and β∗, respectively, at iteration

k. Initialize the algorithm with Êr(1) = 0n×p. Set k = 1.

2. Let X∗∗n (k) = Xn + Êr(k). Replace Xn with X∗∗n (k) in Algorithm 5.3, and use it

to find the group positive RIVAL estimate β̂(k).

3. Update Êr according to Êr(k + 1) = [Yn −Xnβ̂(k)]β̂T (k)[I + β̂(k)β̂T (k)]−1.

4. If the stopping criteria is met, stop. If not, set k = k + 1, and go back to Step 2.

especially when γI = 0.02 and γB = 0.10; in this case, the total least squares method finds

the correct model more than 35% more than group positive RIVAL alone.

The algorithm did not perform as strongly for the second case, where the library

uncertainty had to be drastically reduced to get any interpretable results. As shown in

Table 6.6, group positive RIVAL and TLS with group positive RIVAL both perform well

for γ = 0.001. When γ = 0.003, the TLS algorithm finds the correct set every time, while

the group positive RIVAL never finds it. Neither algorithm finds the correct set when

γ = 0.005. There are many possible explanations for this outcome, but I believe the cause

to be a numerical issue. Decomposing spectra into sub-spectra increases the dimension of

the problem and, given the fact that the algorithm must be implemented for many different

values of t, this challenges computer processing power to the point where the grid of t’s

may not have been simulated as fine as it needed to be without having processing issues. It

was always assumed that the grid of t’s was sufficient enough to contain the correct model.

This may have been the case for the first model of library uncertainty but is not the case for
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Table 6.5: The performance of total least squares with group positive RIVAL as

compared to that of group positive RIVAL alone for different library uncertainties

modeled as in case 1: FPR = false positive rate, FNR = false negative rate, CIR =

correctly identified rate, and FoCM = frequency of correct model.

γI γB Method FPR FNR CIR FoCM

0.01

0.01
Group positive RIVAL 0.0013 0.0000 0.9988 0.9900
TLS + Group positive RIVAL 0.0000 0.0000 1.0000 1.0000

0.02
Group positive RIVAL 0.0013 0.0000 0.9988 0.9900
TLS + Group positive RIVAL 0.0000 0.0000 1.0000 1.0000

0.05
Group positive RIVAL 0.0413 0.0033 0.9554 0.7200
TLS + Group positive RIVAL 0.0125 0.0000 0.9875 0.9000

0.02 0.10
Group positive RIVAL 0.0688 0.0067 0.9246 0.5200
TLS + Group positive RIVAL 0.0125 0.0000 0.9875 0.8800

Table 6.6: The performance of total least squares with group positive RIVAL as

compared to that of group positive RIVAL alone for different library uncertainties

modeled as in case 2.

γ Method FPR FNR CIR FoCM

0.001
Group positive RIVAL 0.0000 0.0000 1.0000 1.0000
TLS + Group positive RIVAL 0.0000 0.0000 1.0000 1.0000

0.003
Group positive RIVAL 0.0000 0.3333 0.6667 0.0000
TLS + Group positive RIVAL 0.0000 0.0000 1.0000 1.0000

0.005
Group positive RIVAL 0.2500 0.3333 0.4167 0.0000
TLS + Group positive RIVAL 0.2500 0.3333 0.4167 0.0000
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the second model. Recall for the first model, the library uncertainty needed to be reduced

from that of the non-group case. Even for some fixed t’s, the group algorithm was unable

to be simulated because of computer memory issues. Thus, the results of when γ = 0.005

should be viewed as inconclusive.
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CHAPTER 7
CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

7.1 Summary and Conclusions

Contemporary radioactive isotope detection algorithms in less-than-ideal situations,

such as at U.S. ports of entry where detectors are large and far away from the materials

in question, are not reliable means of detection due to the poor resolution characteristic of

large detectors, and from the corruption of the isotopes’ nuclear signatures (i.e., their re-

spective gamma-ray spectra) by background radiation from naturally occurring radioactive

materials. The methods of peak detection, energy windowing, and LASSO were analyzed

and demonstrated to give lackluster performances, especially in an experiment where a trace

amount of special nuclear material used for nuclear weapons is present and in the shadow of

a more dominant, but less threatening, radioactive isotope such as I131. From the literature

survey I conducted in Chapter 2, it is obvious that the energy windowing technique fails to

separate the special nuclear material from the less threatening isotope, because the energy

windowing technique, by definition, only produces anomaly warnings and fails to classify

the isotopes. I demonstrated in Chapter 3 that, even with a modest signal to noise ratio of

-10 dB, traditional peak detection methods also fail to separate the special nuclear material

from the I131, and LASSO has an impractically high false positive error rate.

In Section 3.1, I began the development of new physics-based detection algorithms

by describing how to model detection as a linear equation. Physics provides the regressor

library Xn – a template describing the expected gamma-ray energy counts for a collection

of isotopes per unit time and per unit source material – but the actual counts are random

and follow a Poisson distribution. Then, the difference between the actual counts and
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the expected counts is considered random noise Vn, with noise at each energy channel

independent from the next. The model

Yn = Xnβ
∗ + Vn

is the basic model used for detection, where β∗ is a vector representing the true but unknown

isotope intensities, and Yn is known from the detector. Thus, detection is essentially a linear

regression problem for which it is desirable to determine which components of β∗ are zero

and which are not, corresponding to isotopes being absent or present. Since LASSO was

created for just this purpose, and a substantial amount of research has been conducted on

LASSO accordingly, it was an attractive option upon which to build detection algorithms,

though LASSO, by itself, fails to solve the specific problem of nuclear material detection

when energy spectra are weak and poorly resolved.

There are two problems concerning the application of LASSO to nuclear material

detection. The first is that the detector data may or may not satisfy the irrepresentable

condition described in Section 2.3.2, hence, LASSO may or may not have set consistency.

The second is that most of the LASSO results established from various authors in various

works are asymptotical, i.e., the results hold only when the number of detector channels n

goes to infinity. The implication of these problems is that few LASSO results hold for the

detection problem when n is fixed and finite, and LASSO may have a high false alarm rate.

With an emphasis placed on data being fixed and finite, several new detection algo-

rithms were introduced in this thesis and were shown to outperform other linear regression

variable selectors. The first original detection algorithm introduced here was a two stage

algorithm that combined LASSO with sub-sampling to estimate the parameter distribution

and provide a tight confidence interval to reduce false positive errors. An error bound for
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the estimated distribution was established for finite data length, and, since an asymptotic

distribution may or may not be a good approximation when data is finite, it was shown that

the estimation based on the sub-sampling technique was sometimes a better approximation

than that of the asymptotic method. The performance of the two stage algorithm of LASSO

and sub-sampling was compared to that of LASSO alone, and, as expected, the addition of

the sub-sampling stage decreased the false positive error rate.

Positive RIVAL was the next new detection algorithm to be introduced, and all

detection methods that followed were based on this one algorithm. Positive RIVAL, which

stands for removing irrelevant variables amidst LASSO iterations, works by iteratively solv-

ing the weighted positive LASSO problem while strategically updating crucial parameters

inside the weighted positive LASSO cost function. The positive modification to LASSO is

motivated by the application to nuclear material detection where all of the unknown pa-

rameters (isotope intensities) are to be non-negative. The idea of positive RIVAL is similar

to some other popular variable selectors, e.g., non-negative garrote and adaptive LASSO, in

that weights are adjusted based on a convergent sequence of estimates. All these methods

have asymptotical set consistency but perform differently in real situations when the the

number of data is fixed and finite. In this case, the unique, self-adjusting ability of posi-

tive RIVAL allows for the algorithm to perform better than its competitors by requiring a

smaller number of data for set convergence. Quantifying these improvements theoretically

proved to be difficult, but also unnecessary, as a large number of simulations were run show-

ing the significant improvement of positive RIVAL over the non-negative garrote, LASSO

as solved by LARS, and the adaptive LASSO.

In an effort to make positive RIVAL more applicable for a wider range of problems,



www.manaraa.com

133

the non-negativity assumption of the unknown parameters was relaxed, and the modified

algorithm was dubbed RIVAL. This algorithm is the same as positive RIVAL, except each

iteration involves solving the weighted LASSO (not weighted positive LASSO). RIVAL was

not tested on nuclear material detection, but was instead tested on several popular variable

selection problems from various published works. The performance of RIVAL, along with

the performances of LASSO, adaptive LASSO, and non-negative garrote, were supplied

in Section 4.4, and to no surprise, RIVAL performed well, especially when the number of

data points was small. The reason is the same as it was for positive RIVAL: RIVAL has a

self-adjusting ability that allows for convergence with a smaller n.

With the utility of RIVAL having been established, the focus was directed back

to nuclear material detection when it was considered how shielding would affect detection

and, in particular, the positive RIVAL algorithm. When nuclear materials are shielded,

isotopes’ nuclear signatures change, and this presents a significant problem to any detection

algorithm, positive RIVAL included. It was explained in Chapter 5 that realistically all

situations will have some degree of shielding due to truck cargo, the truck itself, the atmo-

sphere, etc., and so another modification to positive RIVAL was necessary. As it happens,

shielding attenuates lower frequency signals more so than higher ones, and, as a result, the

characteristic shapes of the isotopes’ gamma-ray spectra change. Therefore, it was nec-

essary to decompose each isotopes’ spectrum into a linear combination of its sub-spectra,

where an isotope’s entire group of sub-spectra completely described its main spectrum.

Each sub-spectrum featured exactly one characteristic peak of the main spectrum, and

so the attenuation by a shield was assumed constant for each entire mono-energetic sub-

spectrum. It was the grouped nature of the data that was the real motivation for the new
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algorithm, called group positive RIVAL, since it is counterproductive to have an algorithm

select between sub-spectra of the same group (isotope). Instead, what was needed was an

algorithm to encourage grouping and determine which groups of sub-spectra are present,

thereby identifying which isotopes are present. The group positive LASSO – a hybrid of

group LASSO and positive LASSO – was introduced in this thesis, and its convergence re-

sults were supplied. The new group positive RIVAL algorithm iteratively solved the group

positive LASSO and encouraged the selection of groups by applying the same weights to

each parameter within a group.

Group positive RIVAL was initially tested without the presence of shielding materi-

als, and, to my surprise, the results were not as good as the non-group case; positive RIVAL

performed well at -32 dB, whereas group positive RIVAL could go no lower than -24 dB.

I hypothesized that the reason for this was due to the library becoming ill-conditioned as

more and more sub-spectra were considered. I could choose to omit several sub-spectra by

raising the minimum branching ratio, but this defeats the purpose of the experiment. In

fact, since shielding exists everywhere and in all situations, the comparison between positive

RIVAL and group positive RIVAL, as applied to nuclear material detection, is purely for

theoretical purposes and really has no practical interpretation. The algorithm was then

tested with different combinations of shielding materials, shield thicknesses, and nuclear

material strengths. The algorithm worked well for concrete, water, and carbon shielding

materials, but struggled to detect accurately under lead shielding. A modest amount of nu-

clear material was practically invisible under a lead shield thinner than a pack of cigarettes

– no doubt a consequence of lead’s large density.

Finally, a more robust detection scheme was proposed that paired (group) positive
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RIVAL with the method of total least squares for when uncertainty may exist in the library

Xn. Total least squares is a linear regression technique that takes errors into account from

both the dependent variable and the independent variable; however, much like the ordinary

least squares estimate, the total least squares estimate generally produces all non-zero

estimates, making it insufficient for variable selection. When a regularization is applied

to the total least squares estimate, i.e., the regularization found in the positive LASSO

minimization, this new method, called regularized total least squares, can be useful in the

variable selection problem. The positive RIVAL algorithm was modified to incorporate

regularized total least squares, and this new algorithm was shown in Section 6.2 to perform

better than ordinary positive RIVAL under different library uncertainties. In fact, for the

case where the library uncertainty was the largest simulated, the addition of total least

squares helped positive RIVAL find the correct nuclear materials more than 35% more

often than without total least squares. Unfortunately, as of the time of writing this thesis,

I do not have any theoretical convergence proofs for this new algorithm.

7.2 Directions for Future Research

7.2.1 Determining the Shield Material

If nuclear material is detected, it is possible, in theory, to identify the type of

shielding material and also estimate its thickness by observing the ratio of estimated within-

group sub-spectra intensities. To perform such an analysis, two things are required: (1)

the detected nuclear material must have more than two sub-spectra (see Table 5.1), and

(2) a reliable estimate of the detected intensities must be available. Regarding (2), recall

that group positive RIVAL does not estimate intensities, rather, it identifies if intensities

are zero or not.
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For now, assume a reliable estimate is available. To simplify the analysis, also assume

that the detected material consists of exactly three sub-spectra. Let the true sub-spectra

intensities of the jth isotope be

β∗j1 = β0
j e
−µj,1l

β∗j2 = β0
j e
−µj,2l

β∗j3 = β0
j e
−µj,3l,

where β0
j is the unknown unshielded intensity of the jth nuclear material, µj,i, i = 1, 2, 3,

is the attenuation coefficient of the jth nuclear material at its ith energy peak, and l is

the mass thickness of the shielding material – all of which are discussed in Section 5.1. If

β∗ji, i = 1, 2, 3, were available, the first two expressions could be divided to eliminate the

unknown unshielded intensity β0
j ,

β∗j1
β∗j2

= el(µj,2−µj,1),

and this leads to ln(β∗j1/β
∗
j2) = l(µj,2 − µj,1). This process can be repeated for β∗j2 and β∗j3

to get ln(β∗j2/β
∗
j3) = l(µj,3 − µj,2). These two expressions can be divided to eliminate the

unknown mass thickness l

ln(β∗j1/β
∗
j2)

ln(β∗j2/β
∗
j3)

=
µj,2 − µj,1
µj,3 − µj,2

.

The intensities β∗ji, i = 1, 2, 3, are not available, but their estimates β̂ji are. Thus, we choose

the one of four possible shielding materials, whose attenuation coefficients are known, that

minimizes ∣∣∣ ln(β̂j1/β̂j2)

ln(β̂j2/β̂j3)
− µj,2 − µj,1
µj,3 − µj,2

∣∣∣.
Once the shielding material is found, finding the mass thickness l is trivial.
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A reliable estimate is crucial to the identification of the shielding material. For

the estimates used in this thesis, I used the set as found by group positive RIVAL to trim

off irrelevant regressors from the matrix Xn and then perform a least squares estimate.

What I found was that with the inclusion of much more data into Xn brought forth by the

introduction of sub-spectra, the pseudo-inverse required of the least squares estimate was

near singular. This makes the least squares estimate unreliable. Different estimates should

be considered, if not a completely different approach. For reference, I have included the

MATLAB code determineShielding.m in Section 9.3, which is my attempt at determining

the shield material and thickness.

7.2.2 Generalizing Theorem 5.2

It was required for the convergence proof of Theorem 5.2 that Hj was a scaled

identity matrix, even though simulations showed the convergence of group positive RIVAL

for more general cases. Generalizing this theorem by requiring only that Hj be diagonal

(and positive) would further strengthen the argument in favor of group positive RIVAL. As

it is now, Algorithm 5.3 instructs us to update weights by dividing by ξj , the average of the

norms of each column of Xjn. Of course, when Hj is a scaled identity matrix, the scaling

constant is ξj , and so essentially we are normalizing by the diagonal element.

The problem is that, for each iteration k, it is not known which elements within the

jth group are contributing to Nk (see the proof of Theorem 5.2 in Chapter 8), and so the

normalization in the weight update procedure must be one that takes all of the columns of

Xjn into account, e.g., the average of the norms of each column of Xjn, the minimum of

the norms of each column of Xjn, or the maximum of the norms of each column of Xjn.

When Hj is a scaled identity matrix, these three normalization examples are all equivalent
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and reduce to normalizing column by column.

If Hj is allowed to be a general diagonal matrix (with positive elements), and the

update procedure is changed as to normalize by the maximum of the norms of each column

of Xjn, Lemma A.3 can be proven, but Lemma A.4 cannot. On the other hand, when the

update procedure is to normalize by the minimum of the norms of each column of Xjn,

Lemma A.4 can be proven, but Lemma A.3 cannot.

7.2.3 Algorithm 6.2 Parameter Convergence

It was established in Section 6.2 that Algorithms 6.1 and 6.2 converge to the global

minimum of the cost functions of the positive LASSO regularized total least squares and the

positive RIVAL total least squares, respectively, by stating that each update never worsens

the positive, convex cost functions. No convergence results were ever stated regarding the

estimates β̂ and Êr to their true values β∗ and ∆Xn. Recall, that these two algorithms fall

into a class of algorithms known as alternating convex search algorithms and can be used to

solve the minimization of biconvex cost functions. It was shown in [17] that it is not possible

to prove the parameter convergence of an alternating convex search algorithm applied to

a biconvex minimization in the general case. One could hope that the specific form of the

positive LASSO regularized total least squares would lend itself well to the mathematics

and allow for the possibility of proving parameter convergence. The authors of [45] use

an alternating convex search algorithm to solve total least squares with a LASSO-type of

regularization for a compressive sensing application. They state that the algorithm at least

converges to a stationary point and the limit point depends on the initialization, but they

make no attempt at a rigorous proof.
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CHAPTER 8
PROOFS OF SELECTED THEOREMS AND LEMMAS

8.1 Proof of Theorem 3.1

The second part of the theorem follows directly from [14]. For the first part,

Fβ̂Ns
(b) = E1[β̂(i)≤b]. Observe Wi = 1[β̂(i)≤b] − Fβ̂Ns (b) is zero mean and stationary be-

cause yi and vi are stationary. Following [14], we have

E
(
F̂β̂Ns

(b)− Fβ̂Ns (b)
)2

= E
( 1

m

m∑
i=1

Wi

)2
=

1

m2

m∑
i=1

m∑
j=1

WiWj

=
1

m2

m∑
τ=−m

(m− |τ |)γ(τ)

where γ(τ) = EWiWi+τ . Notice vi is i.i.d. and its strong mixing coefficient satisfies

α(τ) = sup
A,B
{|Pr{AB} − Pr{A}Pr{B}|

∣∣A ∈ A0, B ∈ Aτ}

=

{
≤ 1, τ = 0
0, τ > b

where A0 and Aτ are the σ–algebras generated by vi, i ≤ 0 and vτ , τ ≥ 0 respectively. Now,

it follows from [14] that |γ(τ)| ≤ 12α(|τ |). Thus,

E
(
F̂β̂Ns

(b)− Fβ̂Ns (b)
)2

=
1

m2

m∑
τ=−m

(m− |τ |)γ(τ) ≤ 12

m
.

�

8.2 Proof of Theorem 4.3:

Minimizing

J = (Yn −Xnβ)T (Yn −Xnβ) + t ·
p∑
j=1

wjβj , βj ≥ 0
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is equivalent to minimizing

J2 = −2nβ∗TCnβ − 2V T
n Xnβ + nβTCnβ + t ·

p∑
j=1

wjβj , βj ≥ 0

which is equivalent to minimizing

J3 = −2
n

t
β∗T


ξ1 0 · · · 0
0 ξ2 · · · 0
...

...
. . .

...
0 0 · · · ξp

β +
2V T

n Xn

t
β∗ − 2V T

n Xn

t
β

+
n

t
βT


ξ1 0 · · · 0
0 ξ2 · · · 0
...

...
. . .

...
0 0 · · · ξp

β +
n

t
βT∗


ξ1 0 · · · 0
0 ξ2 · · · 0
...

...
. . .

...
0 0 · · · ξp

β∗ +

p∑
j=1

wjβj

= a(β∗ − β)T


ξ1 0 · · · 0
0 ξ2 · · · 0
...

...
. . .

...
0 0 · · · ξp

 (β∗ − β) + d̂(β∗ − β) +

p∑
j=1

wjβj

where a = n
t , d̂ = 2V Tn Xn

t = 2V Tn Xn√
n

√
n
t = (d̂1, ..., d̂p), and βj ≥ 0. Therefore, minimizing J3

is achieved by minimizing J4 and J5 separately, where

J4 =
d∑
j=1

(aβ2
j − 2abjβj +

wj
ξj
βj), bj = β∗j +

d̂j
2aξj

where βj ≥ 0, and

J5 =

p∑
j=d+1

(aβ2
j − cjβj +

wj
ξj
βj), βj ≥ 0.

Since a = n
t , d̂ = 2V Tn Xn√

n

√
n
t , cj =

d̂j
ξj

, bj = β∗j +
d̂j

2aξj
, there always exists a δ > 0 for large

enough n so the the conditions of Lemmas 8.1 and 8.2 are simultaneously satisfied.

�

Lemma 8.1 (Zero Identification). Consider a sequence of scalar minimization problems

J = min
β(k)≥0

{
aβ2(k)− cβ(k) + w(k)β(k)

}
, a > 0, w(1) = 1.
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Assume there exists a constant δ > 0 such that

a ≥ (c+ δ)2

8
.

Let β(k) be the solution of J for the given w(k). Construct β(k+1) as follows. If β(k) = 0,

set β̂(k + i) = 0 for i ≥ 0 and stop the algorithm. If β(k) > 0, let w̄ = 1/β(k) and

w(k + 1) = Q(k)w̄(k) + (1−Q(k))w(k),

where 0 ≤ Q(k) ≤ 1 is a sequence satisfying
∑∞

k=1Q(k) =∞. Denote β(k+ 1) the solution

of J for given w(k + 1). Then, there exists a finite integer k0 ≥ 1 such that the sequence

generated from the above satisfies

β̂(k) = 0, ∀k ≥ k0

Proof: If 1 = w(1) ≥ c, the minimum β(1) = 0 and this implies k0 = 1 and β(k) = 0,

k ≥ k0 = 1. If c > w(1), the minimum β(1) is achieved at some β(k) > 0. The first order

necessary condition

∂J

∂β
= 2aβ − (c− w) = 0

implies

β(1) =
c− w(1)

2a
> 0 → w̄(1) =

2a

c− w(1)
.

From the hypothesis, we have

2a− (c− δ)2

4
≥ δc →

[
w(1)− (c− δ)

2

]2
− (c− δ)2

4
+ 2a ≥ δc

Thus,

2a− cw(1) + w2(1)

c− w(1)
≥ δ or w̄(1) ≥ w(1) + δ

and

w(2) = Q(1)w̄(1) + (1−Q(1))w(1)
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≥ Q(1)w(1) +Q(1)δ + (1−Q(1))w(1) = w(1) +Q(1)δ

By induction, if w(k) < c, w(k + 1) ≥ w(k) +Q(k)δ ≥ w(1) +
∑k

i=1Q(i) · δ. Equivalently,

there is an integer k0 > 0 such that w(k0) > c and the corresponding solution of J is

β(k0) = 0 and β(k0 + i) = 0, i ≥ 0.

�

Lemma 8.2 (Non-Zero Identification). Consider a sequence of scalar minimization prob-

lems

J = min
β(k)≥0

{
aβ2(k)− 2abβ(k) + w(k)β(k)

}
, a > 0, b > 0, w(1) = 1.

Assume there exists a constant δ > 0 such that

δ =
b−

√
b2 − 2/a

2
> 0

and

w(1) ≤ 2ab− 1

b− δ
.

Let β(k) be the solution of J for the given w(k). Construct β(k+1) as follows. If β(k) = 0,

set β(k + i) = 0 for i ≥ 0 and stop the algorithm. If β(k) > 0, let w̄ = 1/β(k) and

w(k + 1) = Q(k)w̄(k) + (1−Q(k))w(k),

where 0 ≤ Q(k) ≤ 1 is a sequence satisfying
∑∞

k=1Q(k) =∞. Denote β(k+ 1) the solution

of J for given w(k+1). Then, the sequence β(k) is uniformly bounded from above and from

below

0 < η1 ≤ β(k) ≤ η2 <∞, ∀k.

Proof: The idea of the proof is to show that the w(k)’s are bounded. b > 0 and w(1) < 2ab

imply that the minimum is achieved at some β(1) > 0. The first order necessary condition

∂J

∂β
= 2aβ − 2ab+ w = 0
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implies

β(1) = b− w(1)

2a
> 0 → w̄(1) =

1

b− w(1)
2a

> 0.

Further, w(1) ≤ 2ab− 1
b−δ leads to

(b− δ)w(1) ≤ 2ab(b− δ)− 1 → w̄(1)

2a
− b

=
1

2ab− w(1)
− b ≤ −δ

or

w̄(1) ≤ 2ab− 2aδ.

On the other hand, from the definition of δ, it is easilty verified that

δ2 − δb+ 1/(2a) = 0 → 2aδ = 1/(b− δ).

Hence,

0 < w(1) ≤ 2ab− 1

b− δ
→ 0 < w̄(1) ≤ 2ab− 1

b− δ

and this implies

0 < w(2) = Q(1)w̄(1) + (1−Q(1))w(1) ≤ 2ab− 1

b− δ
.

By the induction, we have for all k ≥ 1,

0 < w(k) ≤ 2ab− 1

b− δ

and

β(k) = b− w(k)

2a
≥ δ > 0.

This shows that β(k) is bounded away from zero. The upper bound can be derived easily,

β(k) ≤ b+ |w(k)/(2a)| ≤ 2b− δ <∞, ∀k.

�
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8.3 Proof of Theorem 5.2

Minimizing

J1 = (Yn −Xnβ)T (Yn −Xnβ) + t

p∑
j=1

wj

Kj∑
i=1

βji, βji ≥ 0

is equivalent to minimizing

J2 = −2nβ∗T
( 1

n
XT
nXn

)
β − 2V T

n Xnβ + nβT
( 1

n
XT
nXn

)
β + t

p∑
j=1

wj

Kj∑
i=1

βji, βji ≥ 0

which is equivalent to minimizing

J3 = −2
n

t
β∗T


H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hp

β +
2V T

n Xn

t
β∗ − 2V T

n Xn

t
β

+
n

t
βT


H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hp

β +
n

t
β∗T


H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hp

β∗

+

p∑
j=1

wj

Kj∑
i=1

βji, βji ≥ 0.

Because of the form of 1
nX

T
nXn, we may do the minimization of each group separately.

Consider the jth group. The minimization of the group is

J = a(β∗j − βj)THj(β
∗
j − βj) + d̂(β∗ − β) + wj

Kj∑
i=1

βji, βji ≥ 0

= aξj(β
∗
j − βj)T (β∗j − βj) + d̂(β∗ − β) + wj

Kj∑
i=1

βji, βji ≥ 0

where a = n
t , and d̂ =

2V Tn Xjn√
n

√
n
t = (d̂1, ..., d̂Kj ). For j = 1, ...d, the minimization can be

written as

J4 =

Kj∑
i=1

[
aβ2

ji − 2abiβji +
wj
ξj
βji

]
, bi = β∗ji +

di
2aξj
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where βji ≥ 0, and for j = d+ 1, ..., p, the minimization is

J5 =

Kj∑
i=1

[
aβ2

ji − ciβji +
wj
ξj
βji

]
, ci = d̂i/ξj

where βji ≥ 0. Since a = n
t , d̂ =

2V Tn Xjn√
n

√
n
t , ci = d̂i

ξj
, bi = β∗ji + di

2aξj
, there always exists

a constant δ > 0 for large enough n so that the conditions of Lemmas (8.3) and (8.4) are

simultaneously satisfied. Then, the conclusions follow from those two lemmas.

�

Lemma 8.3 (Group Non-Zero Identification).

J = min
βi≥0
{aβ2

i (k)− ciβi(k) +
w(k)

ξ
βi(k)}, a > 0, w(1) = 1, i = 1, ...,K.

Assume there exists a constant δ > 0 such that

a ≥ (Ĉ + δ)2

8

where Ĉ = maxE{
∑

i∈E ci}, E ⊆ {1, ...,K}. Let βi(k), i = 1, ...,K, be the solution of J for

the given w(k). Construct βi(k+ 1) as follows. If
∑

i βi(k) = 0, set βi(k+ κ) = 0 for κ ≥ 0

and stop the algorithm. If
∑

i βi(k) > 0, update the weight as

w(k + 1) = q(k) · 1∑
i β(k)

+ (1− q(k))
w(k)

ξ

where 0 ≤ q(k) ≤ 1 is a sequence satisfying
∑∞

k=1 q(k) =∞. Denote βi(k + 1) the solution

of J for given w(k + 1). Then, there exists a finite integer k0 ≥ 1 such that the sequence

generated above satisfies
K∑
i=1

βi(k) = 0, ∀k ≥ k0,

or equivalently, since βi ≥ 0,

||β(k)||2 = 0, ∀k ≥ k0, where β(k) =

β1(k)
...

βK(k)

 .
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Proof: Assume there are 0 ≤ Nk ≤ K elements that satisfy the following:

1 = w(1) < ciξ.

If Nk = 0, then w(1) ≥ max(ciξ), i = 1, ...K and β1(1) = ... = βK(1) = 0. Thus∑
i β(k) = ||β(k)||2 = 0 and k0 = 1. If Nk > 0, without loss of generality, re-arrange indices

such that w(1) < ciξ, i = 1, ..., Nk. Then, the first order necessary condition

∂J

∂βi
= 0→ βi(1) =

ciξ − w(1)

2aξ
> 0, i = 1, ..., Nk

and
K∑
i=1

βi(1) =

∑Nk
i=1 ci − w(1)Nk/ξ

2a
> 0.

Let

w̄(1) =
1∑K

i=1 βi(1)
=

2a∑Nk
i=1 ci − w(1)Nk/ξ

> 0.

From the hypothesis, it must be the case that

a ≥
(
∑Nk

i=1 ci + δ)2

8

since it is guaranteed that Ĉ ≥
∑Nk

i=1 ci. This implies

2a−
(
∑Nk

i=1 ci − δ)2

4
≥ δ

Nk∑
i=1

ci

→
[
w(1)Nk/ξ −

(
∑Nk

i=1 ci − δ)
2

]2
−

(
∑Nk

i=1 ci − δ)2

4
+ 2a ≥ δ

Nk∑
i=1

ci

→ w2(1)N2
k/ξ

2 − w(1)Nk/ξ
( Nk∑
i=1

ci − δ
)

+ 2a ≥ δ
Nk∑
i=1

ci

→ w(1)Nk/ξ
[
w(1)Nk/ξ −

Nk∑
i=1

ci

]
+ 2a ≥ δ

[ Nk∑
i=1

ci − w(1)Nk/ξ
]

→
2a− w(1)Nk/ξ

[∑Nk
i=1 ci − w(1)Nk/ξ

]
∑Nk

i=1 ci − w(1)Nk/ξ
≥ δ → w̄(1)− w(1)Nk/ξ ≥ δ
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→ w̄(1)δ + w(1)Nk/ξ ≥ δ + w(1)/ξ.

From the described weight update procedure,

w(2) = q(1)w̄(1) + (1− q(1))
w(1)

ξ
≥ δ · q(1) +

w(1)

ξ
.

By the induction, if w(k) < ciξ, w(k+1) ≥ w(k)
ξ +δ·q(k) ≥ w(1)

ξ +δ·
∑k

l=1 q(l) or equivalently,

there is an integer k0 > 0 such that w(k0) > ciξ and the corresponding solution of J is

βi(k0) = 0 and βi(k + κ) = 0, κ ≥ 0. Then
∑

i β(k) = ||β(k)||2 = 0.

�

Lemma 8.4 (Group Zero Identification). Consider a sequence of minimization prob-

lems

J = min
βi≥0
{aβ2

i (k)− 2abiβi(k) +
w(k)

ξ
βi(k)}, a > 0, w(1) = 1, bi > 0, i = 1, ...,K.

Re-arrange indices and define 1 ≤ Nk ≤ K such that w(1)/ξ < 2abi, i = 1, ..., Nk. Assume

there exists a constant δ > 0 such that

δ =
B −

√
B2 − 2Nk

a

2
> 0,

w(1)

ξ
≤ 2abi

Nk
− 1

B − δ
, i = 1, ..., Nk

where B =
∑Nk

i=1 bi. Let βi(k), i = 1, ...,K, be the solution of J for the given w(k).

Construct βi(k + 1) as follows. If
∑

i βi(k) = 0, set βi(k + κ) = 0 for κ ≥ 0 and stop the

algorithm. If
∑

i βi(k) > 0, update the weight as

w(k + 1) = q(k) · 1∑
i β(k)

+ (1− q(k))
w(k)

ξ

where 0 ≤ q(k) ≤ 1 is a sequence satisfying
∑∞

k=1 q(k) =∞. Denote βi(k+1) the solution of

J for given w(k + 1). Then, the sequence ||β(k)||2, β(k) = (β1(k), ..., βK(k))T , is uniformly

bounded from above and below

0 < η1 ≤ ||β(k)||2 ≤ η2 <∞, ∀k > k0.
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Proof: The idea of the proof is to show that w(k)’s are bounded. The condition on w(1)

ensures w(1)/ξ < 2abi for i = 1, ..., Nk, and thus the first order necessary condition

∂J

∂βi
= 2aβi − 2abi + w/ξ → βi(1) = bi −

w(1)

2aξ
> 0, i = 1, ..., Nk.

So
K∑
i=1

βi(1) =
2aB −Nkw(1)/ξ

2a
> 0.

Define w̄(1) = 1/
∑K

i=1 βi(1)

w̄(1) =
2a

2aB −Nkw(1)/ξ
> 0.

Now, from the hypothesis,

w(1)

ξ
≤ 2abi

Nk
− 1

B − δ
→ Nk(B − δ)w(1)/ξ ≤ 2abi(B − δ)−Nk

→ B
[
Nkw(1)/ξ − 2abi

]
+Nk ≤ δ

[
Nkw(1)/ξ − 2abi

]
→ B +

Nk

Nkw(1)/ξ − 2abi
≥ δ, i = 1, ..., Nk

→ Nk

2abi −Nkw(1)/ξ
−B ≤ −δ → Nk

2aB −Nkw(1)/ξ
−B ≤ −δ

and

w̄(1)Nk

2a
−B ≤ −δ

So

w̄(1) ≤ 2a

Nk
B − 2a

Nk
δ.

From our choice of δ, we see that 2aδ/Nk = 1/(B − δ), so then

w̄(1) ≤ 2a

Nk
B − 1

B − δ

and

w(1)/ξ ≤ 2abi
Nk
− 1

B − δ
≤ 2a

Nk
B − 1

B − δ
.
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This implies

w(2) = q(1)w̄(1) + (1− q(1))
w(1)

ξ
≤ 2a

Nk
B − 1

B − δ
.

By the induction, we have for all k ≥ 1,

0 < w(k) ≤ 2a

Nk
B − 1

B − δ
, and βi(k) = bi −

w(k)

2aξ
, i = 1, ..., Nk.

So,

2abi − 2aβi(k) ≤ 2a

Nk
B − 1

B − δ
, i = 1, ..., Nk.

Noting that the minimum is achieved at βi(k) = 0 for i = Nk, ...,K, we have

−2a
K∑
i=1

βi(k) ≤ −Nk

B − δ
→

K∑
i=1

βi(k) ≥ Nk

2a
· 1

B − δ
= δ > 0.

This is implies there exists some η1 such that ||β(k)||2 ≥ η1 > 0. The upper bound can be

derived easily,

K∑
i=1

βi(k) = B − Nkw(k)

2aξ
→

K∑
i=1

βi(k) ≤ B +
Nkw(k)

2aξ
≤ B +B − Nk

2a(B − δ)

→
K∑
i=1

βi(k) ≤ 2B − δ <∞.

Therefore, ||β(k)||2 must be bounded by some η2 <∞.

�
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CHAPTER 9
MATLAB CODE

9.1 Master.m

1 %The following MATLAB code, written by Paul Kump and Er−wei Bai,
2 %uses the group RIVAL algorithm to detect simulated nuclear
3 %materials. It does so by applying RIVAL with a grid of
4 %candidate lambdas, trimming off the irrelevant variables,
5 %computing least squares with new set, then computing AIC/BIC
6 %for each of the candidate lambdas. The code selects that
7 %lambda that minimizes this AIC/BIC and selects the estimate
8 %given from this lambda.
9 %

10 %Shielding can be simulated by calling the function
11 %applyShield.m. This function simulates shielding as the
12 %library is scaled by exponentials with powers of mass thickness
13 %times shielding coefficients. The shielding material and
14 %thickness can be estimated by calling determineshielding.m.
15 %%
16

17 clear
18

19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 %SETUP
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 [num,txt,raw]=xlsread('isotopesNS.xls');
23

24 BA133=num(:,1:7);
25 CE139=num(:,8);
26 CO57=num(:,9:10);
27 CO60=num(:,11:14);
28 CS137=num(:,15:18);
29 GA67=num(:,19:24);
30 I131=num(:,25:29);
31 K40=num(:,30);
32 NA22=num(:,31:32);
33 PU239=num(:,33:42);
34 BACKGND=1/10*num(:,43);
35

36 numberOfMaterials=11; %%materials plus background
37
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38

39 BB=[BA133 CE139 CO57 CO60 CS137...
40 GA67 I131 K40 NA22 PU239 BACKGND];
41

42 [mb nb]=size(BB);
43 [BA133rows, BA133columns]=size(BA133);
44 [CE139rows, CE139columns]=size(CE139);
45 [CO57rows, CO57columns]=size(CO57);
46 [CO60rows, CO60columns]=size(CO60);
47 [CS137rows, CS137columns]=size(CS137);
48 [GA67rows, GA67columns]=size(GA67);
49 [I131rows, I131columns]=size(I131);
50 [K40rows, K40columns]=size(K40);
51 [NA22rows, NA22columns]=size(NA22);
52 [PU239rows, PU239columns]=size(PU239);
53 [BACKGNDrows, BACKGNDcolumns]=size(BACKGND);
54

55 subLengths=[BA133columns CE139columns CO57columns...
56 CO60columns CS137columns GA67columns I131columns...
57 K40columns NA22columns PU239columns BACKGNDcolumns];
58

59 subSum=cumsum(subLengths);
60

61

62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 %CHOOSE SHIELD AND APPLY
64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65

66

67 [BBprime,shield]=applyShield(BB,subSum,4,20); %%(data getting
68 %%shielded, subSum, shielding material, mass thickness)
69 %%shielding material: enter 1 for carbon
70 %%(graphite), enter 2 for concrete, enter 3 for
71 %%lead, and enter 4 for water.
72

73

74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
75 %CHOOSE SNR OR UNCOMMENT AND CHOOSE ALPHA
76 %ALPHA WILL BE DETERMINED BY SNR OR SNR WILL BE DETERMINED
77 %BY ALPHA
78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
79

80

81 alpha=1;
82 SNR=10*log10(alpha*(sum(sum(.2*BBprime(:,33:42)))+sum(sum(...
83 BBprime(:,25:29))))/(sum(sum(BBprime(:,end)))));
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84 % SNR=−10;
85 % alpha=10ˆ(SNR/10)*sum(sum(BACKGND))/(sum(sum(.2*PU239))+...
86 % sum(sum(I131))); %%signal strength.
87

88 beta=[alpha*[zeros(subLengths(1),1);zeros(subLengths(2),1); ...
89 zeros(subLengths(3),1);zeros(subLengths(4),1); ...
90 zeros(subLengths(5),1); zeros(subLengths(6),1);...
91 1*ones(subLengths(7),1); zeros(subLengths(8),1); ...
92 zeros(subLengths(9),1); 0.2*ones(subLengths(10),1)];...
93 ones(subLengths(11),1)];
94

95

96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
97 %DEFINE THRESHOLDS
98 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
99

100 t1=0.0000009; %threshold for zero
101 t2=0.00001; %stopping criterion for iteration
102

103 for s=1:numberOfMaterials
104 thresholdArray(s)=t1*sqrt(subLengths(s));
105 end
106

107 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108 %BEGIN SIMULATIONS
109 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110

111 simulations=1;
112 er=zeros(1,numberOfMaterials);
113

114 for ii=1:simulations %# of Monte Carlo simulations
115 ii
116 bh=[];
117 YY=poissrnd(BBprime*beta,[mb,1]);
118 for i=1:mb
119 YY1(i,1)=YY(i)*sqrt(1/YY(i));
120 BB1(i,:)=BB(i,:)*sqrt(1/YY(i));
121 end
122 bh(:,1)=abs(inv(BB1'*BB1)*BB1'*YY1);
123 e1=1;
124 i1=1;
125

126 index=1;
127 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
128 %BEGIN MAIN RIVAL LOOP
129 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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130 for lambda=.03:.001:.05
131

132 while e1 > t2
133 ind=find(bh(:,i1) >= t1); %find > 0 elements in beta
134 lind=length(ind);
135 phi=[];
136 bb=[];
137 w=[];
138 weight=zeros(numberOfMaterials,1);
139 count=zeros(numberOfMaterials,1);
140

141

142 for jj=1:lind
143 test=false;
144 ww=1;
145 while test==false && ww < numberOfMaterials+1
146 if ind(jj)<1+subSum(ww)
147 group(jj,i1)=ww;
148 test=true;
149 end
150 ww=ww+1;
151 end
152 weight(group(jj,i1)) = weight(group(jj,i1))+...
153 bh(ind(jj),i1);
154 count(group(jj,i1))=count(group(jj,i1))+1;
155 end
156

157 for k=1:lind
158 phi(:,k)=BB1(:,ind(k)); %corr column of beta >0
159 end
160 for k=1:lind
161 correction=0;
162 for j=1:lind
163 if group(j,i1)==group(k,i1)
164 correction=correction+sum(phi(:,j));
165 end
166 end
167 %weights
168 w(k,1)=lambda*1/(weight(group(k,i1)))*correction;
169 end
170

171 A=phi'*phi;
172 C=(phi'*YY1−1/2*w);
173 i=1;
174 e=1;
175 bb(:,1)=abs(inv(A)*phi'*YY1);
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176

177 while e > t2 %solve positive lasso
178 bhat1=bb(:,i);
179

180 for k=1:lind
181 bhat1(k)=max((C(k)−A(k,:)*bhat1+A(k,k)*...
182 bhat1(k))/A(k,k),0);
183 end
184 i=i+1;
185 bb(:,i)=bhat1;
186 e=norm(bb(:,i)−bb(:,i−1))/norm(bb(:,i−1));
187 end
188

189 for k1=1:lind %construct new estimate beta
190 bh(ind(k1),i1+1)=bb(k1,end);
191 end
192 %stoping criterion
193 e1=norm(bh(:,i1+1)−bh(:,i1))/norm(bh(:,i1));
194 i1=i1+1;
195 end
196

197 bhat(:,ii)=bh(:,end);
198 best(:,index)=bhat(:,ii);
199

200 normArray(1,ii)=norm(bhat(1:subSum(1),ii));
201 for x=2:numberOfMaterials
202 normArray(x,ii)=norm(bhat(1+subSum(x−1):subSum(x),ii));
203 end
204

205 least=[];
206 pass=0;
207 for xx=1:numberOfMaterials
208 if normArray(xx,ii)>=thresholdArray(xx)
209 for xxx=1:subLengths(xx)
210 if xx==1
211 least(:,xxx+pass)=BB1(:,xxx);
212 else
213 least(:,xxx+pass)=BB1(:,subSum(xx−1)+xxx);
214 end
215 end
216 pass=xxx+pass;
217 end
218 end
219

220 leastSquares=abs(inv(least'*least)*least'*YY1);
221
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222

223 AIC(index)=informationCriterion(YY1,least,leastSquares,0);
224 %BIC(index)=informationCriterion(YY1,least,leastSquares,1);
225

226 index=index+1;
227 end %%%%%%%%%%%%%%end main RIVAL loop%%%%%%%%%%%%%%%%%%%%
228

229 [optimalAIC,optimalIndex]=min(AIC);
230 %[optimalBIC,optimalIndex]=min(BIC);
231 rivalBeta=best(:,optimalIndex);
232

233 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
234 %WHICH MATERIALS WERE FOUND AND DETERMINE THE SHIELD
235 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
236

237 index=find(rivalBeta>0);
238 lindex=length(index);
239 least=[];
240 for h=1:lindex
241 hh=1;
242 test=false;
243 if index(h)<subSum(hh)+1
244 grouping(h)=hh;
245 test=true;
246 elseif index(h)>subSum(numberOfMaterials −1)
247 grouping(h)=numberOfMaterials;
248 test=true;
249 end
250 while hh<numberOfMaterials && test==false
251 if index(h)>subSum(hh)&& index(h)<subSum(hh+1)+1
252 grouping(h)=hh+1;
253 test=true;
254 end
255 hh=hh+1;
256 end
257 end
258

259 least=[];
260 pass=0;
261 for xx=1:numberOfMaterials
262 if normArray(xx,ii)>=thresholdArray(xx)
263 er(xx)=er(xx)+1;
264 for xxx=1:subLengths(xx)
265 if xx==1
266 least(:,xxx+pass)=BB1(:,xxx);
267 else
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268 least(:,xxx+pass)=BB1(:,subSum(xx−1)+...
269 xxx);
270 end
271 end
272 pass=xxx+pass;
273 end
274 end
275

276 leastSquares=abs(inv(least'*least)*least'*YY1);
277

278 %%determineshield doesn't work yet
279 [shieldMaterial(ii),massThickness(ii),cmThickness(ii)]=...
280 determineshielding(rivalBeta,leastSquares,grouping,...
281 count,subLengths,subSum);
282

283

284 end %%%%%%%%%%%%%%END SIMULATION LOOP%%%%%%%%%%%%%%%%
285 er

9.2 ApplyShield.m

1 function [shielded,shield]=applyShield(BB,subSum,a,X)
2 %Written by Paul Kump.
3 %%This function reads in library BB, shielding material a, and
4 %%mass thickness X and applies the appropriate shielding to BB.
5

6 shield=eye(subSum(end));
7

8 if X==0
9 shielded=BB;

10 else
11 [num,txt,raw]=xlsread('Shielding.xls');
12

13

14 BA133attenuation=num(1:subSum(1),a+1);
15 CE139attenuation=num(1+subSum(1):subSum(2),a+1);
16 CO57attenuation=num(1+subSum(2):subSum(3),a+1);
17 CO60attenuation=num(1+subSum(3):subSum(4),a+1);
18 CS137attenuation=num(1+subSum(4):subSum(5),a+1);
19 GA67attenuation=num(1+subSum(5):subSum(6),a+1);
20 I131attenuation=num(1+subSum(6):subSum(7),a+1);
21 K40attenuation=num(1+subSum(7):subSum(8),a+1);
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22 NA22attenuation=num(1+subSum(8):subSum(9),a+1);
23 PU239attenuation=num(1+subSum(9):subSum(10),a+1);
24

25

26

27 % for i=1:subSum(1)
28 % shield(i,i)=exp(−1*BA133attenuation(i)*X);
29 % end
30 % j=1;
31 % for i=subSum(1)+1:subSum(2)
32 % shield(i,i)=exp(−1*CE139attenuation(j)*X);
33 % j=j+1;
34 % end
35 % j=1;
36 % for i=subSum(2)+1:subSum(3)
37 % shield(i,i)=exp(−1*CO57attenuation(j)*X);
38 % j=j+1;
39 % end
40 % j=1;
41 % for i=subSum(3)+1:subSum(4)
42 % shield(i,i)=exp(−1*CO60attenuation(j)*X);
43 % j=j+1;
44 % end
45 % j=1;
46 % for i=subSum(4)+1:subSum(5)
47 % shield(i,i)=exp(−1*CS137attenuation(j)*X);
48 % j=j+1;
49 % end
50 % j=1;
51 % for i=subSum(5)+1:subSum(6)
52 % shield(i,i)=exp(−1*GA67attenuation(j)*X);
53 % j=j+1;
54 % end
55 j=1;
56 for i=subSum(6)+1:subSum(7)
57 shield(i,i)=exp(−1*I131attenuation(j)*X);
58 j=j+1;
59 end
60 j=1;
61 % for i=subSum(7)+1:subSum(8)
62 % shield(i,i)=exp(−1*K40attenuation(j)*X);
63 % j=j+1;
64 % end
65 % j=1;
66 % for i=subSum(8)+1:subSum(9)
67 % shield(i,i)=exp(−1*NA22attenuation(j)*X);
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68 % j=j+1;
69 % end
70 j=1;
71 for i=subSum(9)+1:subSum(10)
72 shield(i,i)=exp(−1*PU239attenuation(j)*X);
73 j=j+1;
74 end
75

76 shielded=BB*shield;
77 shield;
78 end

9.3 DetermineShielding.m

1

2 function [shieldMaterial,massThickness,cmThickness]=...
3 determineshielding(beta,betaLS,group,...
4 count,subLengths,subSum)
5 %Written by Paul Kump
6 %if we are only testing one subspectra of the material in
7 % question, shield detection is impossible.
8 if length(find(count>1))==0
9

10 shieldMaterial=−1;
11 massThickness=0;
12 cmThickness=0;
13 else %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%begin detection
14

15 threshold=.1; %determining if there is a shield or not
16 t1=40; %realistically, maximum shielding thickness in cm
17

18 %%%%extract shielding information%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 ind=find(beta>0);
20 lind=length(ind);
21

22 bin(1)=group(1);
23 pass=0;
24 for i=2:lind
25 if group(i)˜=group(i−1)
26 bin(i−pass)=group(i);
27 else
28 pass=pass+1;
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29 end
30 end
31

32 bin;
33 information=[];
34 pass=0;
35 d=0;
36 for j=1:length(bin)−1
37 for jj=1:subLengths(bin(j))−1
38 information(jj+pass)=betaLS(jj+pass+d)/...
39 betaLS(jj+pass+1+d);
40 information(jj+pass)=log(information(jj+pass));
41 end
42 d=d+1;
43 pass=jj+pass;
44 end
45 information;
46 lindi=length(information);
47 %%%%%%%%%%%%Is there a shield?%%%%%%%%%%%%%%%%%%%%%%%%%%%
48 %no, there is not a shield
49 if norm(information)/sqrt(lindi)<threshold
50 shieldMaterial=0;
51 massThickness=0;
52 cmThickness=0;
53

54 else %yes, there is a shield, now find it.
55

56 [num,txt,raw]=xlsread('Shielding.xls');
57 densities=[2.62 2.3 11.34 1];
58

59

60 for z=1:4
61 pass=0;
62 for i=1:length(bin)−1
63 for j=1:subLengths(bin(i))−1
64 if bin(i)==1
65 y(j+pass,z)=num(j+1,1+z)−num(j,1+z);
66 else
67 y(j+pass,z)=num((subSum(bin(i)−1)+j+1),...
68 1+z)− num((subSum(bin(i)−1)+j),1+z);
69 end
70 end
71 pass=pass+j;
72 end
73 end
74
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75 y;
76 scaling=y'*information'/(information*information');
77

78 for z=1:4
79 J(z)=(norm(scaling(z)*information'−y(:,z)))ˆ2;
80 end
81

82 J;
83 [minJ, shieldMaterial]=min(J);
84 massThickness=1/scaling(shieldMaterial);
85 cmThickness=massThickness/densities(shieldMaterial);
86

87 end
88 end

9.4 MAdPosiLasso.m

1 %Modified adaptive possive lasso
2 %Written by Paul Kump and Erwei Bai.
3 clear
4

5 load WEdata\CO60
6 load WEdata\CO57
7 load WEdata\NA22
8 load WEdata\CS137
9 load WEdata\I131

10 load WEdata\K40
11 load WEdata\U235
12 load WEdata\PU238
13 load WEdata\BA133
14 load WEdata\CE139
15 load WEdata\GA67
16 load WEdata\PU239
17 load WEdata\BACKGND
18

19 BB=[PU239(:,end) GA67(:,end) CS137(:,end) U235(:,end)...
20 K40(:,end) NA22(:,end) BA133(:,end) CE139(:,end)...
21 I131(:,end) CO57(:,end) CO60(:,end) BACKGND(:,end)];
22

23 [mb nb]=size(BB);
24 beta=[1/30*[0.2;0;0;0;0;0;0;0;1];0;0;1];
25 % beta=[0.1;0;0;0.1;0;0;0;0;0;0;0;1];
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26 er=zeros(1,nb);
27 t1=0.00009; %threshold for zero
28 t2=0.00001; %stopping criterion for iteration
29 lambda=.001;
30

31 for ii=1:1 %# of Monte Carlo simulations
32 ii;
33 bh=[];
34 p1=1; %number average
35 YY=zeros(mb,1);
36 for i=1:p1
37 YY=YY+poissrnd(BB*beta,[mb,1])/p1;
38 end
39 for i=1:mb
40 YY1(i,1)=YY(i)*sqrt(1/YY(i));
41 BB1(i,:)=BB(i,:)*sqrt(1/YY(i));
42 end
43

44 bh(:,1)=abs(inv(BB1'*BB1)*BB1'*YY1);
45 e1=1;
46 i1=1;
47

48 while e1 > t2
49 ind=find(bh(:,i1) >= t1); %find > 0 elements in beta
50 lind=length(ind);
51 IND(:,i1)=zeros(nb,1);
52 for kk=1:lind
53 IND(kk,i1)=ind(kk);
54 end
55 phi=[];
56 bb=[];
57 w=[];
58 for k=1:lind
59 phi(:,k)=BB1(:,ind(k)); %corr column of beta >0
60 w(k,1)=lambda*1/bh(ind(k),i1)*sum(phi(:,k));%weights
61 end
62 A=phi'*phi;
63 C=(phi'*YY1−1/2*w);
64 i=1;
65 e=1;
66 bb(:,1)=abs(inv(A)*phi'*YY1);
67

68 while e > t2 %solve positive lasso
69 bhat1=bb(:,i);
70

71 for k=1:lind
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72 bhat1(k)=max((C(k)−A(k,:)*bhat1+A(k,k)*...
73 bhat1(k))/A(k,k),0);
74 end
75 i=i+1;
76 bb(:,i)=bhat1;
77 e=norm(bb(:,i)−bb(:,i−1))/norm(bb(:,i−1));
78 end
79

80 for k1=1:lind %construct new estimate beta
81 bh(ind(k1),i1+1)=bb(k1,end);
82 end
83 %stoping criterion
84 e1=norm(bh(:,i1+1)−bh(:,i1))/norm(bh(:,i1));
85 i1=i1+1;
86 end
87 bhat(:,ii)=bh(:,end);
88 for i2=1:nb
89 if bhat(i2,ii) >= t1
90 er(i2)=er(i2)+1;
91 end
92 end
93 end
94 SNR=10*log10(1/15*(.2*sum(sum(PU239))+sum(sum(I131)))...
95 /sum(sum(BACKGND)))
96 er

9.5 PLasso.m

1

2 function [ estimate ] = pLasso( BB1, YY1, lambda )
3 %Solve the positive LASSO for fixed regularization parameter
4 % Algorithm is a coordinate ascent algorithm
5 %Written by Erwei Bai and Paul Kump.
6 [m p]=size(BB1);
7 t1=0.00009;
8 A=BB1'*BB1;
9 C=(BB1'*YY1−1/2*lambda*ones(p,1));

10 h=1;
11 e1=1;
12 bb(:,1)=abs(inv(A)*BB1'*YY1);
13 while e1 > t1 %solve positive lasso
14 bhat1=bb(:,h);
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15

16 for k=1:p
17 bhat1(k)=max((C(k)−A(k,:)*bhat1+A(k,k)...
18 *bhat1(k))/A(k,k),0);
19 end
20 h=h+1;
21 bb(:,h)=bhat1;
22 e1=norm(bb(:,h)−bb(:,h−1))/norm(bb(:,h−1));
23 end
24 estimate=bb(:,end);
25

26 end

9.6 Rival.m

1

2 function beta=rival(X,y,lambda,Q)
3 %%RIVAL with no positivity
4 %Written by Paul Kump and Erwei Bai.
5

6 t1=0.000009; %threshold for zero
7 t2=0.00001; %stopping criterion for iteration
8

9 if Q==0
10 bls=inv(X'*X)*X'*y;
11 w=1./bls.ˆ2;
12 bh=LassoShootingAdapt(X,y,lambda,w);
13 else
14 bh=[];
15 bh(:,1)=abs(inv(X'*X)*X'*y);
16 e1=1;
17 i1=1;
18 weight=[];
19 while e1 > t2
20 %find > 0 elements in beta
21 ind=find(abs(bh(:,i1)) >= t1);
22 lind=length(ind);
23 if lind==0
24 e1=0;
25 else
26 phi=[];
27 bb=[];
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28 w=[];
29 if i1==1
30 for k=1:lind
31 phi(:,k)=X(:,ind(k));
32 w(k,1)=1/(abs(bh(ind(k),i1)).ˆ2) %weights
33 weight(ind(k),i1)=w(k,1);
34 end
35 else
36 for k=1:lind
37 phi(:,k)=X(:,ind(k));
38 w(k,1)=(Q/(abs(bh(ind(k),i1)).ˆ2)+(1−Q)...
39 *weight(ind(k),i1−1)); %weights
40 weight(ind(k),i1)=w(k,1);
41 end
42 end
43

44 bb=LassoShootingAdapt(phi,y,lambda,w);
45

46 for k1=1:lind %construct new estimate beta
47 bh(ind(k1),i1+1)=bb(k1,end);
48 end
49 e1=norm(bh(:,i1+1)−bh(:,i1))/norm(bh(:,i1));
50 i1=i1+1;
51 end
52 end
53 end
54 beta=bh(:,end);

9.7 PoiLandSub.m

1

2 %The following code, written by Er−wei Bai, uses the method of
3 %Lasso (AIC, BIC) + Subsampling or Bootstrap or Asymptotic
4 %approximation to detect nuclear materials. The Lasso is
5 %solved using the LARS algorithm as opposed to simulating over
6 %a grid of candidate lambdas. Both the AIC and BIC methods are
7 %used to choose correct model dimension.
8

9 clear
10 close all
11

12 load WEdata\CO60
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13 load WEdata\CO57
14 load WEdata\NA22
15 load WEdata\CS137
16 load WEdata\I131
17 load WEdata\K40
18 load WEdata\U235
19 load WEdata\PU238
20 load WEdata\BA133
21 load WEdata\CE139
22 load WEdata\GA67
23 load WEdata\PU239
24 load WEdata\BACKGND
25 % load WEdata\Whatisthis2
26

27 % BB=[10*PU238(:,end) PU239(:,end) GA67(:,end) CS137(:,end)...
28 % U235(:,end) K40(:,end) NA22(:,end) BA133(:,end) ...
29 % CE139(:,end) I131(:,end) CO57(:,end) CO60(:,end) ...
30 % BACKGND(:,end) ones(1024,1)];
31 BB=[PU239(:,end) GA67(:,end) CS137(:,end) U235(:,end)...
32 K40(:,end) NA22(:,end) BA133(:,end) CE139(:,end)...
33 I131(:,end) CO57(:,end) CO60(:,end) BACKGND(:,end)];
34

35 [M nb]=size(BB);
36

37 err=zeros(6,2);
38 %1st row=AIC, 2nd=BIC 3rd=AIC+B or S
39 %4th=BIC+B or S, 5th=AIC+A, 6th=BIC+A
40 FE=zeros(1,nb−1);
41 eA=zeros(2,nb−1); %error of Lasso(AIC)
42 eB=zeros(2,nb−1); %error of Lasso(BIC)
43 esub=zeros(2,nb−1); %subsampling or asymptotic only
44 eAB=zeros(2,nb−1); %error of Lasso(AIC)+B or S
45 eBB=zeros(2,nb−1); %error of Lasso(BIC) +B or S
46 % eAA=zeros(2,nb−1); %error of Lasso(AIC)+A
47 % eBA=zeros(2,nb−1); %error of Lasso(BIC) +A
48 % beta(nb,1)=0;
49 % beta(nb−1)=1;
50 beta=[1*[0.2 0 0 0 0 0 0 0 1] 0 0 1]';
51 FR=[1 0 0 0 0 0 0 0 1 0 0 1 ];
52

53 for ii=1:10
54 ii
55

56 % s=rand(1,nb−2);
57 % for k1=1:nb−2
58 % if s(k1) > 0.6
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59 % beta(k1)=rand+0.05;
60 % FE(1,k1)=FE(1,k1)+1;
61 % FR(k1)=1; %whether material k1 is present or not
62 % else FR(k1)=0; beta(k1)=0;
63 % end
64 % end
65

66 p1=5;
67 YY=zeros(M,1);
68 for i=1:p1
69 YY=YY+poissrnd(BB*beta,[M,1])/p1;
70 end
71 for i=1:M
72 YY1(i,1)=YY(i)*sqrt(1/YY(i));
73 BB1(i,:)=BB(i,:)*sqrt(1/YY(i));
74 end
75

76 lassob = lars(BB1, YY1, 'lasso', 0, 0, [], 1);
77 normsize = sum(abs(lassob),2)/sum(abs(lassob(end,:)));
78

79 [ac al]=size(lassob);
80

81 ath3=0;
82 AICs=[];
83 BICs=[];
84 AICs(1)=10ˆ(10);
85 BICs(1)=10ˆ(10);
86 for i=2:ac
87 CC=[];
88 bb=lassob(i,:);
89 Ibb=find(bb > ath3);
90 Lbb=length(Ibb);
91 for k=1:Lbb
92 CC(:,k)=BB1(:,Ibb(k));
93 end
94 AICs(i)=M*log(norm(YY1−CC*inv(CC'*CC)*CC'*YY1)ˆ2/M)+2*Lbb;
95 BICs(i)=M*log(norm(YY1−CC*inv(CC'*CC)*CC'*YY1)ˆ2/M)...
96 +log(1024)*Lbb;
97 % AICs(i)=norm(YY1−CC*inv(CC'*CC)*CC'*YY1)ˆ2*...
98 % (1+2*Lbb/(M−Lbb))/M;
99 % BICs(i)=norm(YY1−CC*inv(CC'*CC)*CC'*YY1)ˆ2*...

100 % (1+log(1024)*Lbb/(M−Lbb))/M;
101 end
102 [a1,a2]=min(AICs);
103 [b1,b2]=min(BICs);
104
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105 % % Bootstrap
106 % for k=1:1000
107 % for i=1:length(YY1)
108 % r=ceil(rand*1024);
109 % B(i,:)=BB1(r,:);
110 % Y(i,1)=YY1(r);
111 % end
112 % hb(:,k)=inv(B'*B)*B'*Y;
113 % end
114

115 %resampling to generate distribution of parameters
116 N=980;
117 for i=1:M−N
118 B=BB1(i:i−1+N,:);
119 Y=YY1(i:i−1+N);
120 hb(:,i)=inv(B'*B)*B'*Y; %LS estimate
121 end
122

123 % %asymptotic approximation
124 % hba=inv(BB1'*BB1)*BB1'*YY1;
125 % Yhat=BB1*hba;
126 % sigmahat=(Yhat−YY1)'*(Yhat−YY1)/(M−nb);
127 % P=inv(BB1'*BB1)/M;
128

129 ath2=0.05;
130 for i=1:nb−1
131 ab= mean(hb(i,:))+3*std(hb(i,:)); %Bootstrap or Subsampling
132 % as= hba(i)+3*(sigmahat*P(i,i)/M);%asymptotic approximation
133 %
134 % if lassob(a2,i) < ath3 & FR(i)==1 %AIC only
135 % err(1,1)=err(1,1)+1; eA(1,i)=eA(1,i)+1;
136 % end
137 % if lassob(a2,i) >= ath3 & FR(i)==0
138 % err(1,2)=err(1,2)+1; eA(2,i)=eA(2,i)+1;
139 % end
140 % if lassob(b2,i) <ath3 & FR(i)==1 %BIC only
141 % err(2,1)=err(2,1)+1; eB(1,i)=eB(1,i)+1;
142 % end
143 % if lassob(b2,i) >= ath3 & FR(i)==0
144 % err(2,2)=err(2,2)+1; eB(2,i)=eB(2,i)+1;
145 % end
146 if (lassob(a2,i) <ath3 | ab< ath2) & (FR(i)==1) %AIC +B
147 err(3,1)=err(3,1)+1; eAB(1,i)=eAB(1,i)+1;
148 end
149 if (lassob(a2,i) >= ath3 & ab > ath2) & (FR(i)==0)
150 err(3,2)=err(3,2)+1; eAB(2,i)=eAB(2,i)+1;
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151 end
152 if (lassob(b2,i) <ath3 | ab < ath2) & (FR(i)==1) %BIC+B
153 err(4,1)=err(4,1)+1; eBB(1,i)=eBB(1,i)+1;
154 end
155 if (lassob(b2,i) >= ath3 & ab > ath2) & (FR(i)==0)
156 err(4,2)=err(4,2)+1; eBB(2,i)=eBB(2,i)+1;
157 end
158 % if (ab < ath2 & FR(i)==1) %B or subsampling only
159 % err(5,1)=err(5,1)+1; esub(1,i)=esub(1,i)+1;
160 % end
161 % if (ab > ath2 & FR(i)==0)
162 % err(5,2)=err(5,2)+1; esub(2,i)=esub(2,i)+1;
163 % end
164 % if (lassob(a2,i) <ath3 | as< ath2) & (FR(i)==1) %AIC +A
165 % err(5,1)=err(5,1)+1; eAA(1,i)=eAA(1,i)+1;
166 % end
167 % if (lassob(a2,i) >= ath3 & as > ath2) & (FR(i)==0)
168 % err(5,2)=err(5,2)+1; eAA(2,i)=eAA(2,i)+1;
169 % end
170 % if (lassob(b2,i) <ath3 | as < ath2) & (FR(i)==1) %BIC+A
171 % err(6,1)=err(6,1)+1; eBA(1,i)=eBA(1,i)+1;
172 % end
173 % if (lassob(b2,i) >= ath3 & as > ath2) & (FR(i)==0)
174 % err(6,2)=err(6,2)+1; eBA(2,i)=eBA(2,i)+1;
175 % end
176 end
177

178

179

180 end
181

182

183

184 % FE
185

186

187 eA
188 eB
189 eAB
190 eBB
191 esub
192 % eAA
193 % eBA
194

195 err
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9.8 TLSlassoNuclear2.m

1

2 %The following code was written by Paul Kump and introduces
3 %the method of total least squares to regularization techniques
4 %like LASSO, positive LASSO, and RIVAL. The performances of
5 %each technique can be compared with one another by commenting
6 %out blocks of methods. The optimum regularization
7 %parameter is determined by simulating over a grid of lambdas
8 % and minimizing the BIC value.
9

10

11 clear
12

13 load CO60
14 load CO57
15 load NA22
16 load CS137
17 load I131
18 load K40
19 load U235
20 load PU238
21 load BA133
22 load CE139
23 load GA67
24 load PU239
25 load BACKGND
26

27 BB=[PU239(:,end) GA67(:,end) CS137(:,end) U235(:,end)...
28 K40(:,end) NA22(:,end) BA133(:,end) CE139(:,end)...
29 I131(:,end) CO57(:,end) CO60(:,end) BACKGND(:,end)];
30 [n p]=size(BB);
31 alpha=10;
32 Er=zeros(n,p);
33 er=zeros(2,p);
34 test=zeros(2,1);
35

36 beta=[alpha*[0.2;0;0;0;0;0;0;0;1];0;0;1];
37 SNR=10*log10(alpha*(.2*sum(sum(PU239))+sum(sum(I131)))/...
38 sum(sum(BACKGND)))
39 t1=0.0009; %iteration stopping criterion
40 t2=0.000009; %threshold for zero
41

42 for iii=1:1
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43 iii
44 YY=poissrnd(BB*beta,[n,1]);
45 for i=1:n
46 YY1(i,1)=YY(i)*sqrt(1/YY(i));
47 BB1(i,:)=BB(i,:)*sqrt(1/YY(i));
48 end
49 %%%%%%%%%%%% LASSO + TLS %%%%%%%%%%%%%%%%%%%%%%%%%%
50 % %BB1=normalize(BB1);
51 % %YY1=center(YY1);
52 % lam=1;
53 % for lambda=0:1000:10000;
54 % %solve the Total Least Squares LASSO
55 % E=[];
56 % bb=[];
57 % e=1;
58 % E(:,:,1)=zeros(n,p);
59 % bb(:,1)=LassoShooting(BB1+E(:,:,1),...
60 % YY1,lambda);
61 % ii=1;
62 % while e>t1
63 % E(:,:,ii+1)=(YY1−BB1*bb(:,ii))*bb(:,ii)'*...
64 % inv((eye(p,p)+bb(:,ii)*bb(:,ii)'));
65 % bb(:,ii+1)=LassoShooting(BB1+E(:,:,ii+1),YY1,...
66 % lambda);
67 % e=norm(bb(:,ii+1)−bb(:,ii))/norm(bb(ii));
68 % ii=ii+1;
69 % end
70 %
71 % estimateTLS(:,lam)=bb(:,end);
72 % BIC(lam)=informationCriterion(YY1, BB1+E(:,:,end),...
73 % estimateTLS(:,lam),1);
74 % lam=lam+1;
75 % end
76 %
77 % [minBIC,minIndex]=min(BIC);
78 % best(:,iii)=estimateTLS(:,minIndex);
79 %
80 % for jj=1:p
81 % if abs(best(jj,iii))>t2
82 % er(1,jj)=er(1,jj)+1;
83 % end
84 % end
85 %%%%%%%%%%%%% END LASSO + TLS %%%%%%%%%%%%%%%%%%
86

87 %%%%%%%%%%%%% JUST LASSO %%%%%%%%%%%%%%%%%%%%%%
88
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89 % BB1=normalize(BB1);
90 % YY1=center(YY1);
91 % estimateLars=[];
92 % estimateLars=lars(BB1, YY1, 'lasso', 0, 0, [], 0);
93 % [m p]=size(estimateLars);
94 % for kk=1:m
95 % bb(:,kk)=estimateLars(kk,:)';
96 % for jj=1:p
97 % if abs(bb(jj:kk))<t2
98 % bb(jj:kk)==0;
99 % end

100 % end
101 % BIC(kk)=informationCriterion(YY1,BB1,bb(:,kk),1);
102 % %AIC(kk)=informationCriterion(YY1,BB1,bb(:,kk),0);
103 % end
104 %
105 %
106 % [minBIC,minIndex]=min(BIC);
107 % best(:,iii)=bb(:,minIndex);
108 %
109 % for jj=1:p
110 % if abs(best(jj,iii))>t2
111 % er(1,jj)=er(1,jj)+1;
112 % end
113 % end
114

115

116 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
117 % OR.... %
118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
119

120 % BB1=normalize(BB1);
121 % YY1=center(YY1);
122 % lam=1;
123 % for lambda=0:1:20
124 % %solve the LASSO
125 % bb(:,1)=LassoShooting(BB1,YY1,lambda);
126 %
127 % estimate(:,lam)=bb(:,end);
128 % AIC(lam)=informationCriterion(YY1, BB1, ...
129 % estimate(:,lam),1);
130 % lam=lam+1;
131 % end
132 %
133 % [minAIC,minIndex]=min(AIC);
134 % best(:,iii)=estimate(:,minIndex);
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135 %
136 % for jj=1:p
137 % if abs(best(jj,iii))>t2
138 % er(1,jj)=er(1,jj)+1;
139 % end
140 % end
141

142 %%%%%%%%%%%%% END JUST LASSO %%%%%%%%%%%%%%%%%%%%%%
143

144 %%%%%%%%%%%%Positive LASSO + TLS %%%%%%%%%%%%%%
145

146 % BB1=normalize(BB1);
147 % YY1=center(YY1);
148 % lam=1;
149 % for lambda=65:65;
150 % %solve the Total Least Squares Positive LASSO
151 % E=[];
152 % bb=[];
153 % e=1;
154 % E(:,:,1)=zeros(n,p);
155 % bb(:,1)=pLasso(BB1+E(:,:,1),YY1,lambda);
156 % ii=1;
157 % while e>t1
158 % E(:,:,ii+1)=(YY1−BB1*bb(:,ii))*bb(:,ii)'*...
159 % inv((eye(p,p)+bb(:,ii)*bb(:,ii)'));
160 % bb(:,ii+1)=pLasso(BB1+E(:,:,ii+1),YY1,lambda);
161 % e=norm(bb(:,ii+1)−bb(:,ii))/norm(bb(ii));
162 % ii=ii+1;
163 % end
164 %
165 % estimateTLS(:,lam)=bb(:,end);
166 % BIC(lam)=informationCriterion(YY1,...
167 % (BB1−E(:,:,end)), estimateTLS(:,lam),1);
168 % lam=lam+1;
169 % end
170 %
171 % [minBIC,minIndex]=min(BIC);
172 % best(:,iii)=estimateTLS(:,minIndex);
173 %
174 % for jj=1:p
175 % if abs(best(jj,iii))>t2
176 % er(1,jj)=er(1,jj)+1;
177 % end
178 % end
179

180 %%%%%%%%%%%%%End Positive LASSO + TLS %%%%%%%%%%%%%%%%%%
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181

182 %%%%%%%%%%%%%% Just Positive LASSO %%%%%%%%%%%%%%%%%%%%%%%%%%%
183 %
184 % BB1=normalize(BB1);
185 % YY1=center(YY1);
186 % estimateLars=[];
187 % estimateLars=pLars(BB1, YY1, 'lasso', 0, 0, [], 0);
188 % [m p]=size(estimateLars);
189 % for kk=1:m
190 % bb(:,kk)=estimateLars(kk,:)';
191 % BIC(kk)=informationCriterion(YY1,BB1,bb(:,kk),1);
192 % end
193 %
194 % [minBIC,minIndex]=min(BIC);
195 % best(:,iii)=bb(:,minIndex);
196 %
197 % for jj=1:p
198 % if abs(best(jj,iii))>t2
199 % er(1,jj)=er(1,jj)+1;
200 % end
201 % end
202 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
203 % OR.... %
204 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
205 % BB1=normalize(BB1);
206 % YY1=center(YY1);
207 % lam=1;
208 % for lambda=20000:20000;
209 % %solve the Positive LASSO
210 % bb(:,1)=pLasso(BB1,YY1,lambda);
211 %
212 % estimate(:,lam)=bb(:,end);
213 % AIC(lam)=informationCriterion(YY1, BB1, ...
214 % estimate(:,lam),1);
215 % lam=lam+1;
216 % end
217 %
218 % [minAIC,minIndex]=min(AIC);
219 % best(:,iii)=estimate(:,minIndex);
220 %
221 % for jj=1:p
222 % if abs(best(jj,iii))>t2
223 % er(1,jj)=er(1,jj)+1;
224 % end
225 % end
226 % if abs(best(1,iii))>t2 && abs(best(9,iii))>t2 && ...
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227 % abs(best(12,iii))>t2&& abs(best(2,iii))<t2 && ...
228 % abs(best(3,iii))<t2 && abs(best(4,iii))<t2...
229 % && abs(best(5,iii))<t2 && abs(best(6,iii))<t2 &&...
230 % abs(best(7,iii))<t2&& abs(best(8,iii))<t2 && ...
231 % abs(best(10,iii))<t2 && abs(best(11,iii))<t2
232 % test=test+1;
233 % end
234

235 %%%%%%%%%%%%%%End Just Positive LASSO %%%%%%%%%%%%%%%%%%%%%%%
236

237 %%%%%%%%%%%%%% RIVAL +TLS %%%%%%%%%%%%%%%%%%%%%%%%%%%
238 for i=1:n
239 for kk=1:p−1
240 Er(i,kk )=sqrt(.1*BB1(i,kk))*randn(1);
241 end
242 Er(i,p)=sqrt(.1*BB1(i,p))*randn(1);
243 end
244

245 BB1=BB1+Er;
246

247

248 lam=1;
249 for lambda=.1:.5:20.1
250 e=1;
251 ii=1;
252 E=[];
253 bb=[];
254 bhat=[];
255 E(:,:,ii)=zeros(n,p);
256 bb=pRival(BB1+E(:,:,ii),YY1,lambda);
257 bhat(:,ii)=bb;
258 while e>t1 %&& ii<10
259 ind=[];
260 phi=[];
261 EE=[];
262 LS=[];
263 A=[];
264 ind=find(bb>t2);
265 lind=length(ind);
266 for k1=1:lind
267 phi(:,k1)=BB1(:,ind(k1));
268 EE(:,k1)=E(:,ind(k1),ii);
269 end
270 A=max(phi+EE,0);
271 LS=abs(inv(phi'*phi)*phi'*YY1);
272 EE=(YY1−phi*LS)*LS'*inv(eye(lind,lind)+LS*LS');
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273

274 for k1=1:lind
275 E(:,ind(k1),ii+1)=EE(:,k1);
276 end
277 bb=pRival(max(BB1+E(:,:,ii+1),0),YY1,lambda);
278 bhat(:,ii+1)=bb;
279 e=norm(bhat(:,ii+1)−bhat(:,ii))/norm(bhat(:,ii));
280

281 % e=norm(E(:,:,ii+1)−E(:,:,ii))/norm(E(:,:,ii));
282 ii=ii+1;
283 end
284

285 estimateRival(:,lam)=bhat(:,1);
286 ind1=[];
287 LS1=[];
288 phi1=[];
289 ind1=find(estimateRival(:,lam)>t2);
290 lind1=length(ind1);
291

292 for k11=1:lind1
293 phi1(:,k11)=BB1(:,ind1(k11));
294 end
295

296 LS1=abs(inv(phi1'*phi1)*phi1'*YY1);
297 BICrival(lam)=informationCriterion(YY1,phi1,LS1,1);
298

299 estimateTLS(:,lam)=bhat(:,end);
300 ind2=[];
301 LS2=[];
302 EE2=[];
303 A2=[];
304 phi2=[];
305 ind2=find(estimateTLS(:,lam)>t2);
306 lind2=length(ind2);
307

308 for k12=1:lind2
309 phi2(:,k12)=BB1(:,ind2(k12));
310 EE2(:,k12)=E(:,ind2(k12),end);
311 end
312

313 A2=max(phi2+EE2,0);
314 LS2=abs(inv(A2'*A2)*A2'*YY1);
315 BICTLS(lam)=informationCriterion(YY1,A2,LS2,1);
316

317 lam=lam+1;
318 end



www.manaraa.com

176

319

320 % for s1=1:n
321 % W(s1,:,:)=E(s1,:,:);%*sqrt(YY(s1));
322 % end
323 %
324 % for k2=1:ii
325 % error(k2)=norm(Er−W(:,:,k2));
326 % end
327 %
328 % plot(error)
329

330 [minBICr, indexRival]=min(BICrival);
331 bestRival=estimateRival(:,indexRival);
332

333 [minBICt, indexTLS]=min(BICTLS);
334 bestTLS=estimateTLS(:,indexTLS);
335

336 for jj=1:p
337 if abs(bestRival(jj))>t2
338 er(1,jj)=er(1,jj)+1;
339 end
340 if abs(bestTLS(jj))>t2
341 er(2,jj)=er(2,jj)+1;
342 end
343 end
344

345 if abs(bestRival(1))>t2 && abs(bestRival(9))>t2 && ...
346 abs(bestRival(12))>t2&& abs(bestRival(2))<t2 && ...
347 abs(bestRival(3))<t2 && abs(bestRival(4))<t2...
348 && abs(bestRival(5))<t2 && abs(bestRival(6))<t2 && ...
349 abs(bestRival(7))<t2&& abs(bestRival(8))<t2 && ...
350 abs(bestRival(10))<t2 && abs(bestRival(11))<t2
351 test(1)=test(1)+1;
352 end
353

354 if abs(bestTLS(1))>t2 && abs(bestTLS(9))>t2 && ...
355 abs(bestTLS(12))>t2&& abs(bestTLS(2))<t2 && ...
356 abs(bestTLS(3))<t2 && abs(bestTLS(4))<t2...
357 && abs(bestTLS(5))<t2 && abs(bestTLS(6))<t2 && ...
358 abs(bestTLS(7))<t2 && abs(bestTLS(8))<t2 && ...
359 abs(bestTLS(10))<t2 && abs(bestTLS(11))<t2
360 test(2)=test(2)+1;
361 end
362

363 %%%%%%%%%%%%%end RIVAL +TLS stuff %%%%%%%%%%%%%%%%%%%%%%%%%%
364
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365

366 %%%%%%%%%%%%%% Just RIVAL %%%%%%%%%%%%%%%%%%%%%%%%%%%
367 %
368 % lam=1;
369 % for lambda=2:2
370 % bb(:,1)=pRival(BB1,YY1,lambda);
371 %
372 % estimate(:,lam)=bb(:,end);
373 % AIC(lam)=informationCriterion(YY1, BB1, estimate...
374 % (:,lam),1);
375 % lam=lam+1;
376 % end
377 %
378 % [minAIC,minIndex]=min(AIC);
379 % best(:,iii)=estimate(:,minIndex);
380 %
381 % for jj=1:p
382 % if abs(best(jj,iii))>t2
383 % er(1,jj)=er(1,jj)+1;
384 % end
385 % end
386 % if abs(best(1,iii))>t2 && abs(best(9,iii))>t2 && ...
387 % abs(best(12,iii))>t2&& abs(best(2,iii))<t2 &&...
388 % abs(best(3,iii))<t2 && abs(best(4,iii))<t2...
389 % && abs(best(5,iii))<t2 && abs(best(6,iii))<t2 && ...
390 % abs(best(7,iii))<t2&& abs(best(8,iii))<t2 && ...
391 % abs(best(10,iii))<t2 && abs(best(11,iii))<t2
392 % test=test+1;
393 % end
394

395 %%%%%%%%%%%%%end Just RIVAL stuff %%%%%%%%%%%%%%%%%%%%%%%%%%%%
396

397 end
398 er
399 % plot(YYY)
400 % hold on
401 % plot(YY1,'r')
402 % difference=norm(YYY−YY1)/norm(YY1)
403 CIR(1,1)=1−(3000−er(1,1)−er(1,9)−er(1,12))/3000 −(er(1,2)...
404 +er(1,3)+er(1,4)+er(1,5)+er(1,6)+er(1,7)...
405 + er(1,8)+er(1,10)+er(1,11))/9000;
406 CIR(2,1)=1−(3000−er(2,1)−er(2,9)−er(2,12))/3000 −(er(2,2)...
407 +er(2,3)+er(2,4)+er(2,5)+er(2,6)+er(2,7)...
408 + er(2,8)+er(2,10)+er(2,11))/9000;
409 CIR
410 test/iii
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9.9 TLSMaster.m

1

2 %The following MATLAB code, written by Paul Kump, uses the
3 %group RIVAL algorithm in conjuction with the method of total
4 %least squares to detect simulated nuclear materials when the
5 %library is uncertain. It does so by applying RIVAL with a
6 %grid of candidate lambdas, trimming off the irrelevant
7 %variables, computing least squares with new set, then
8 %computing AIC/BIC for each of the candidate lambdas. The code
9 %selects that lambda that minimizes this AIC/BIC and selects the

10 %estimate given from this lambda.
11

12 %Shielding can be simulated by calling the function
13 %applyShield.m. This function simulates shielding as the
14 %library is scaled by exponentials with powers of mass
15 %thickness times shielding coefficients. The shielding
16 %material and thickness can be estimated by calling
17 %determineshielding.m.
18 %%
19

20 clear
21

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23 %SETUP
24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25 [num,txt,raw]=xlsread('isotopesNS.xls');
26

27 BA133=num(:,1:7);
28 CE139=num(:,8);
29 CO57=num(:,9:10);
30 CO60=num(:,11:14);
31 CS137=num(:,15:18);
32 GA67=num(:,19:24);
33 I131=num(:,25:29);
34 K40=num(:,30);
35 NA22=num(:,31:32);
36 PU239=num(:,33:42);
37 BACKGND=1/10*num(:,43);
38

39 numberOfMaterials=11; %%materials plus background
40

41

42 BB=[BA133 CE139 CO57 CO60 CS137...
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43 GA67 I131 K40 NA22 PU239 BACKGND];
44

45 [n p]=size(BB);
46 [BA133rows, BA133columns]=size(BA133);
47 [CE139rows, CE139columns]=size(CE139);
48 [CO57rows, CO57columns]=size(CO57);
49 [CO60rows, CO60columns]=size(CO60);
50 [CS137rows, CS137columns]=size(CS137);
51 [GA67rows, GA67columns]=size(GA67);
52 [I131rows, I131columns]=size(I131);
53 [K40rows, K40columns]=size(K40);
54 [NA22rows, NA22columns]=size(NA22);
55 [PU239rows, PU239columns]=size(PU239);
56 [BACKGNDrows, BACKGNDcolumns]=size(BACKGND);
57

58 subLengths=[BA133columns CE139columns CO57columns ...
59 CO60columns CS137columns GA67columns I131columns...
60 K40columns NA22columns PU239columns BACKGNDcolumns];
61

62 subSum=cumsum(subLengths);
63

64

65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66 %CHOOSE SHIELD AND APPLY
67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
68

69

70 [BBprime,shield]=applyShield(BB,subSum,2,0);
71 %%(data getting shielded, subSum, shielding material,...
72 %% mass thickness)
73 %%shielding material: enter 1 for carbon
74 %%(graphite), enter 2 for concrete, enter 3 for
75 %%lead, and enter 4 for water.
76

77

78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
79 %CHOOSE SNR OR UNCOMMENT AND CHOOSE ALPHA
80 %ALPHA WILL BE DETERMINED BY SNR OR SNR WILL BE DETERMINED
81 %BY ALPHA
82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83

84

85 % alpha=10;
86 % SNR=10*log10(alpha*(sum(sum(.2*BBprime(:,33:42)))+...
87 % sum(sum(BBprime(:,25:29))))/(sum(sum(BBprime(:,end)))));
88 SNR=−15;
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89 alpha=10ˆ(SNR/10)*sum(sum(BACKGND))/(sum(sum(.2*PU239))+...
90 sum(sum(I131))); %%signal strength.
91

92 beta=[alpha*[zeros(subLengths(1),1);zeros(subLengths(2),1); ...
93 zeros(subLengths(3),1);zeros(subLengths(4),1); ...
94 zeros(subLengths(5),1); zeros(subLengths(6),1);...
95 1*ones(subLengths(7),1); zeros(subLengths(8),1);...
96 zeros(subLengths(9),1); 0.2*ones(subLengths(10),1)]; ...
97 ones(subLengths(11),1)];
98

99

100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
101 %DEFINE THRESHOLDS
102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
103

104 t1=0.0000009; %threshold for zero
105 t2=0.00001; %stopping criterion for iteration
106

107 for s=1:numberOfMaterials
108 thresholdArray(s)=t1*sqrt(subLengths(s));
109 end
110

111 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
112 %BEGIN SIMULATIONS
113 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
114

115 simulations=1;
116 er=zeros(2,numberOfMaterials);
117 test=zeros(2,1);
118 for ii=1:simulations %# of Monte Carlo simulations
119 ii
120 YY=poissrnd(BBprime*beta,[n,1]);
121 for i=1:n
122 YY1(i,1)=YY(i)*sqrt(1/YY(i));
123 BB1(i,:)=BB(i,:)*sqrt(1/YY(i));
124 end
125 for i=1:n
126 for kk=1:p−1
127 Er(i,kk)=sqrt(.02*BB1(i,kk))*randn(1);
128 end
129 Er(i,p)=sqrt(.02*BB1(i,p))*randn(1);
130 end
131 BB1=BB1+Er;
132

133 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
134 %BEGIN MAIN group TLS RIVAL LOOP
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135 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
136 index=1;
137 for lambda=.03:.001:.05
138 e=1;
139 ii=1;
140 E=[];
141 bb=[];
142 bhat=[];
143 E(:,:,ii)=zeros(n,p);
144 bb=pRivalGroup(BB1+E(:,:,ii),YY1,lambda,...
145 numberOfMaterials,subSum);
146 bhat(:,ii)=bb;
147 normArray(1,ii)=norm(bb(1:subSum(1),1));
148 for x=2:numberOfMaterials
149 normArray(x,ii)=norm(bb(1+subSum(x−1):subSum(x),1));
150 end
151 while e>t1
152 phi=[];
153 EE=[];
154 LS=[];
155 A=[];
156 pass=0;
157 gg=zeros(p);
158 for xx=1:numberOfMaterials
159 if normArray(xx,ii)>=thresholdArray(xx)
160 for xxx=1:subLengths(xx)
161 if xx==1
162 phi(:,xxx+pass)=BB1(:,xxx);
163 EE(:,xxx+pass)=E(:,xxx,ii);
164 gg(xxx)=1;
165 else
166 phi(:,xxx+pass)=...
167 BB1(:,subSum(xx−1)+xxx);
168 EE(:,xxx+pass)=...
169 E(:,subSum(xx−1)+xxx,ii);
170 gg(subSum(xx−1)+xxx)=1;
171 end
172 end
173 pass=xxx+pass;
174 end
175 end
176 A=max(phi+EE,0);
177 [nn,pp]=size(EE);
178 LS=abs(inv(phi'*phi)*phi'*YY1);
179 EE=(YY1−phi*LS)*LS'*inv(eye(pp,pp)+LS*LS');
180 ind=find(gg>0);
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182 for k1=1:pp
183 E(:,ind(k1),ii+1)=EE(:,k1);
184 end
185 bb=pRivalGroup(max(BB1+E(:,:,ii+1),0),YY1,lambda,...
186 numberOfMaterials,subSum);
187 bhat(:,ii+1)=bb;
188 e=norm(bhat(:,ii+1)−bhat(:,ii))/norm(bhat(:,ii));
189

190 ii=ii+1;
191

192 normArray(1,ii)=norm(bb(1:subSum(1),1));
193 for x=2:numberOfMaterials
194 normArray(x,ii)=norm(bb(1+subSum(x−1):...
195 subSum(x),1));
196 end
197 end
198

199 estimateRival(:,index)=bhat(:,1);
200 LS1=[];
201 phi1=[];
202 pass=0;
203 for xx=1:numberOfMaterials
204 if normArray(xx,ii)>=thresholdArray(xx)
205 for xxx=1:subLengths(xx)
206 if xx==1
207 phi1(:,xxx+pass)=BB1(:,xxx);
208 else
209 phi1(:,xxx+pass)=BB1(:,...
210 subSum(xx−1)+xxx);
211 end
212 end
213 pass=xxx+pass;
214 end
215 end
216 LS1=abs(inv(phi1'*phi1)*phi1'*YY1);
217 BICrival(index)=informationCriterion(YY1,phi1,LS1,1);
218

219 estimateTLS(:,index)=bhat(:,end);
220 LS2=[];
221 EE2=[];
222 A2=[];
223 phi2=[];
224 pass=0;
225 for xx=1:numberOfMaterials
226 if normArray(xx,ii)>=thresholdArray(xx)
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227 for xxx=1:subLengths(xx)
228 if xx==1
229 phi2(:,xxx+pass)=BB1(:,xxx);
230 EE2(:,xxx+pass)=E(:,xxx,end);
231 else
232 phi2(:,xxx+pass)=BB1(:,subSum(xx−1)...
233 +xxx);
234 EE2(:,xxx+pass)=E(:,subSum(xx−1)+xxx...
235 ,end);
236 end
237 end
238 pass=xxx+pass;
239 end
240 end
241

242 A2=max(phi2+EE2,0);
243 LS2=abs(inv(A2'*A2)*A2'*YY1);
244 BICTLS(index)=informationCriterion(YY1,A2,LS2,1);
245

246 index=index+1;
247 end %%%%%%%%%%%%%%end main RIVAL loop%%%%%%%%%%%%%%%%%%%
248

249 [minBICr,indexRival]=min(BICrival);
250 bestRival=estimateRival(:,indexRival);
251

252 [minBICt,indexTLS]=min(BICTLS);
253 bestTLS=estimateTLS(:,indexTLS);
254

255 for xx=1:numberOfMaterials
256 if normArray(xx,1)>=thresholdArray(xx)
257 er(1,xx)=er(1,xx)+1;
258 end
259 if normArray(xx,end)>=thresholdArray(xx)
260 er(2,xx)=er(2,xx)+1;
261 end
262 end
263

264

265 if normArray(1,1)<thresholdArray(1) && normArray(2,1)...
266 <thresholdArray(2) && normArray(3,1)<...
267 thresholdArray(3)&& normArray(4,1)<thresholdArray(4)...
268 && normArray(5,1)<thresholdArray(5) &&...
269 normArray(6,1)<thresholdArray(6) && normArray(7,1)...
270 >=thresholdArray(7) && normArray(8,1)...
271 <thresholdArray(8) && normArray(9,1)...
272 <thresholdArray(9)&& normArray(10,1)>=...
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273 thresholdArray(10) && normArray(11,1)>=...
274 thresholdArray(11)
275 test(1,1)=test(1,1)+1;
276 end
277

278 if normArray(1,end)<thresholdArray(1) && normArray(2,end)...
279 <thresholdArray(2) && normArray(3,end)...
280 <thresholdArray(3)&& normArray(4,end)<...
281 thresholdArray(4) && normArray(5,end)<...
282 thresholdArray(5) && normArray(6,end)<...
283 thresholdArray(6) && normArray(7,end)>=...
284 thresholdArray(7) && normArray(8,end)...
285 <thresholdArray(8) && normArray(9,end)...
286 <thresholdArray(9) && normArray(10,end)>=...
287 thresholdArray(10) && normArray(11,end)>=...
288 thresholdArray(11)
289 test(2,1)=test(2,1)+1;
290 end
291 end %%%%%%%%%%%%%%%%%%%%%%%%%%%END SIMULATION LOOP%%%%%%%%%%%%%
292 er
293 test
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